Abstract

A thorough analysis of the key factors impacting on the performance of Brillouin distributed optical fiber sensors is presented. An analytical expression is derived to estimate the error on the determination of the Brillouin peak gain frequency, based for the first time on real experimental conditions. This expression is experimentally validated, and describes how this frequency uncertainty depends on measurement parameters, such as Brillouin gain linewidth, frequency scanning step and signal-to-noise ratio. Based on the model leading to this expression and considering the limitations imposed by nonlinear effects and pump depletion, a figure-of-merit is proposed to fairly compare the performance of Brillouin distributed sensing systems. This figure-of-merit offers to the research community and to potential users the possibility to evaluate with an objective metric the real performance gain resulting from any proposed configuration.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
    [CrossRef]
  2. K. Hotate, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron.E83-C(3), 405–411 (2000).
  3. X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999).
    [CrossRef] [PubMed]
  4. K. Kishida and C.-H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system,” in Proc. Structural Health Monitoring and Intelligent Infrastructure (Taylor and Francis, 2006), pp. 471–477.
  5. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol.25(1), 381–386 (2007).
    [CrossRef]
  6. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  7. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt.48(22), 4297–4301 (2009).
    [CrossRef] [PubMed]
  8. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt.51(9), 1229–1235 (2012).
    [CrossRef] [PubMed]
  9. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
    [CrossRef]
  10. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
    [CrossRef]
  11. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  12. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Tech.30(8), 1161–1167 (2012).
    [CrossRef]
  13. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B22(6), 1321–1324 (2005).
    [CrossRef]
  14. F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
    [CrossRef]
  15. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  16. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
    [CrossRef] [PubMed]
  17. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
    [CrossRef]
  18. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express20(11), 12147–12154 (2012).
    [CrossRef] [PubMed]
  19. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  20. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
    [CrossRef] [PubMed]
  21. S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).
  22. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
    [CrossRef] [PubMed]
  23. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
    [CrossRef] [PubMed]
  24. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  25. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
    [CrossRef] [PubMed]
  26. S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).
  27. X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
    [CrossRef]
  28. M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
    [CrossRef]
  29. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
    [CrossRef]
  30. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol.32(1), 152–162 (2014).
    [CrossRef]
  31. P. H. Richter, “Estimating errors in least-squares fitting,” Telecommun. Data Acquisition Prog. Rep.42(122), 107–137 (1995).
  32. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013).
    [CrossRef] [PubMed]
  33. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V (2011).
    [CrossRef]
  34. S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
    [CrossRef]
  35. L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
    [CrossRef]
  36. J.-C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express19(8), 7381–7397 (2011).
    [CrossRef] [PubMed]
  37. X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993).
    [CrossRef] [PubMed]
  38. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  39. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
    [CrossRef]
  40. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Applications of distributed Brillouin fiber sensing,” in International Conference on Applied Optical Metrology (SPIE, 1998), pp. 374–381.
    [CrossRef]
  41. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
    [CrossRef]
  42. Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010).
    [CrossRef] [PubMed]
  43. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).
  44. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
    [CrossRef]
  45. J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express21(1), 145–153 (2013).
    [CrossRef] [PubMed]
  46. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013).
    [CrossRef] [PubMed]
  47. X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013).
    [CrossRef] [PubMed]

2014 (1)

2013 (7)

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013).
[CrossRef] [PubMed]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
[CrossRef] [PubMed]

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express21(1), 145–153 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013).
[CrossRef] [PubMed]

2012 (9)

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt.51(9), 1229–1235 (2012).
[CrossRef] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Tech.30(8), 1161–1167 (2012).
[CrossRef]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
[CrossRef]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express20(11), 12147–12154 (2012).
[CrossRef] [PubMed]

2011 (6)

2010 (8)

Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
[CrossRef] [PubMed]

H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
[CrossRef] [PubMed]

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
[CrossRef]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
[CrossRef]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
[CrossRef]

2009 (1)

2008 (2)

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

2007 (1)

2005 (1)

2004 (1)

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

2000 (1)

K. Hotate, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron.E83-C(3), 405–411 (2000).

1999 (2)

X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999).
[CrossRef] [PubMed]

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

1995 (3)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

P. H. Richter, “Estimating errors in least-squares fitting,” Telecommun. Data Acquisition Prog. Rep.42(122), 107–137 (1995).

1993 (2)

Alahbabi, M. N.

Alasia, D.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

Alcon-Camas, M.

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ania-Castañon, J. D.

Bao, X.

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Tech.30(8), 1161–1167 (2012).
[CrossRef]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt.51(9), 1229–1235 (2012).
[CrossRef] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
[CrossRef] [PubMed]

Y. Dong, L. Chen, and X. Bao, “System optimization of a long-range Brillouin-loss-based distributed fiber sensor,” Appl. Opt.49(27), 5020–5025 (2010).
[CrossRef] [PubMed]

H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett.35(10), 1503–1505 (2010).
[CrossRef] [PubMed]

Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt.48(22), 4297–4301 (2009).
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

X. Bao, A. Brown, M. Demerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses,” Opt. Lett.24(8), 510–512 (1999).
[CrossRef] [PubMed]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
[CrossRef] [PubMed]

Beugnot, J.-C.

Bolognini, G.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
[CrossRef] [PubMed]

Brown, A.

Brown, A. W.

Brown, K.

Carrasco-Sanz, A.

Chang, L.

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Chen, L.

Chin, S.

Chin, S.-H.

Cho, Y. T.

Colpitts, B. G.

Corredera, P.

Demerchant, M.

Deng, K.

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

Di Pasquale, F.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
[CrossRef] [PubMed]

Diaz, S.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Dong, Y.

Foaleng, S. M.

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V (2011).
[CrossRef]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
[CrossRef]

Foaleng Mafang, S.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Gonzalez-Herraez, M.

González-Herraez, M.

González-Herráez, M.

Guo, H.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

Hong, X.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Hotate, K.

K. Hotate, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron.E83-C(3), 405–411 (2000).

Hu, J.

Jackson, D. A.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
[CrossRef] [PubMed]

Jia, X.-H.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Jiang, Y.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Le Floch, S.

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
[CrossRef] [PubMed]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

Lecœuche, V.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

Li, J.

Li, W.

Li, Y.

Liang, H.

Lin, J.

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013).
[CrossRef] [PubMed]

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Linze, N.

Llera, M.

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

Lopez-Amo, M.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Mafang, S. F.

Martin-Lopez, S.

Newson, T. P.

Nuño, J.

Pannell, C. N.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

Peng, F.

Primerov, N.

Ran, Z.-L.

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Rao, Y.-J.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Richter, P. H.

P. H. Richter, “Estimating errors in least-squares fitting,” Telecommun. Data Acquisition Prog. Rep.42(122), 107–137 (1995).

Rochat, E.

Rodriguez, F.

Rodriguez-Barrios, F.

Sauser, F.

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Smith, J.

Song, K. Y.

Soto, M. A.

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol.32(1), 152–162 (2014).
[CrossRef]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
[CrossRef] [PubMed]

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett.36(2), 232–234 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
[CrossRef] [PubMed]

Taki, M.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

Thevenaz, L.

Thévenaz, L.

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013).
[CrossRef] [PubMed]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
[CrossRef] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
[CrossRef]

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V (2011).
[CrossRef]

J.-C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express19(8), 7381–7397 (2011).
[CrossRef] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
[CrossRef]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett.35(2), 259–261 (2010).
[CrossRef] [PubMed]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
[CrossRef]

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
[CrossRef]

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

Troger, J.

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

Tur, M.

Wang, Z.-N.

Webb, D. J.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett.18(18), 1561–1563 (1993).
[CrossRef] [PubMed]

X. Bao, D. J. Webb, and D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett.18(7), 552–554 (1993).
[CrossRef] [PubMed]

Wu, H.

Wu, J.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Yan, X.-D.

Yang, Z.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Yang, Z.-X.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Yao, Y.

Yuan, C.-X.

Zhang, C.

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

Zhang, H.

Zhang, W.-L.

Zhang, X.

Zhao, X.

Zhu, J.-M.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

Zhu, Y.-Y.

Appl. Opt. (3)

IEEE Photonics Technol. Lett. (2)

X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, and Z.-L. Ran, “Experimental demonstration on 2.5-m spatial resolution and 1°C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding,” IEEE Photonics Technol. Lett.23(7), 435–437 (2011).
[CrossRef]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification,” IEEE Photonics Technol. Lett.24(20), 1823–1826 (2012).
[CrossRef]

IEEE Sens. J. (1)

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thevenaz, “A high-performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron.E83-C(3), 405–411 (2000).

J. Lightwave Tech. (1)

Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs,” J. Lightwave Tech.30(8), 1161–1167 (2012).
[CrossRef]

J. Lightwave Technol. (8)

F. Rodriguez-Barrios, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castanon, L. Thévenaz, and M. Gonzalez-Herraez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol.28(15), 2162–2172 (2010).
[CrossRef]

X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuño, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. González-Herráez, “Raman-assisted Brillouin distributed temperature sensor over 100 km featuring 2 meter resolution and 1.2°C uncertainty,” J. Lightwave Technol.30(8), 1060–1065 (2012).
[CrossRef]

A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol.25(1), 381–386 (2007).
[CrossRef]

S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
[CrossRef]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol.28(14), 2062–2067 (2010).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol.13(7), 1340–1348 (1995).
[CrossRef]

M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol.32(1), 152–162 (2014).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol.13(7), 1296–1302 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing Simplex coding for sub-meter scale spatial resolution over long fiber distances,” Meas. Sci. Technol.24(9), 094018 (2013).
[CrossRef]

L. Thévenaz, S. Le Floch, D. Alasia, and J. Troger, “Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing,” Meas. Sci. Technol.15(8), 1519–1524 (2004).
[CrossRef]

Opt. Commun. (1)

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun.168(1-4), 95–102 (1999).
[CrossRef]

Opt. Eng. (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng.51(12), 124402 (2012).
[CrossRef]

Opt. Express (12)

J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express21(1), 145–153 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, C.-X. Yuan, X.-D. Yan, J. Li, H. Wu, Y.-Y. Zhu, and F. Peng, “Distributed Raman amplification using ultra-long fiber laser with a ring cavity: characteristics and sensing application,” Opt. Express21(18), 21208–21217 (2013).
[CrossRef] [PubMed]

X.-H. Jia, Y.-J. Rao, C.-X. Yuan, J. Li, X.-D. Yan, Z.-N. Wang, W.-L. Zhang, H. Wu, Y.-Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express21(21), 24611–24619 (2013).
[CrossRef] [PubMed]

J.-C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing,” Opt. Express19(8), 7381–7397 (2011).
[CrossRef] [PubMed]

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express21(12), 14017–14035 (2013).
[CrossRef] [PubMed]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express21(14), 16390–16397 (2013).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of pulse modulation format in coded BOTDA sensors,” Opt. Express18(14), 14878–14892 (2010).
[CrossRef] [PubMed]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express20(7), 6860–6869 (2012).
[CrossRef] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express19(5), 4444–4457 (2011).
[CrossRef] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express20(11), 12147–12154 (2012).
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

Opt. Lett. (7)

Proc. SPIE (4)

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performances of Brillouin sensors,” Proc. SPIE7753, 77539V (2011).
[CrossRef]

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE8794, 879437 (2013).

S. Le Floch, F. Sauser, M. A. Soto, and L. Thévenaz, “Time/frequency coding for Brillouin distributed sensors,” Proc. SPIE8421, 84211J (2012).

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127 (2012).

Telecommun. Data Acquisition Prog. Rep. (1)

P. H. Richter, “Estimating errors in least-squares fitting,” Telecommun. Data Acquisition Prog. Rep.42(122), 107–137 (1995).

Other (2)

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Applications of distributed Brillouin fiber sensing,” in International Conference on Applied Optical Metrology (SPIE, 1998), pp. 374–381.
[CrossRef]

K. Kishida and C.-H. Li, “Pulse pre-pump-BOTDA technology for new generation of distributed strain measuring system,” in Proc. Structural Health Monitoring and Intelligent Infrastructure (Taylor and Francis, 2006), pp. 471–477.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Generic BOTDA sensor scheme.

Fig. 2
Fig. 2

Interacting signals in a generic BOTDA sensor. A light pulse of power PP – called pump – interacts with a continuous wave of power PS – called probe or signal – through the intercession of an idler acoustic wave if a strict phase matching condition is satisfied. Phase matching depends on the frequency difference between pump and probe and gives rise to a local power transfer ΔPs between the interacting optical waves.

Fig. 3
Fig. 3

The counter-propagative interacting signals in a BOTDA sensor experience linear loss and exponentially decay during their propagation. Since at each position z the Brillouin response is proportional to the product of the pump pulse of power PP(z) by the CW probe power PS(z) they show complementary amplitudes as a result of the counter-propagating situation and their product is invariant with position z.

Fig. 4
Fig. 4

Measured sensor response for an interaction taking place at the far end of sensing fibers with different length L. Data are normalized to the response obtained at the near end to better visualize the fiber length dependence.

Fig. 5
Fig. 5

Typical local Brillouin spectral response after normalization, measured by a distributed time-domain sensor. The distribution maps a resonant Lorentzian profile and the peak gain frequency must be determined to get an estimated value for the measurand. Noise on the signal (σ) induces uncertainty and the estimation of the peak gain frequency is subject to statistical errors, depending on the Brillouin FWHM (ΔνB) and the frequency step (δ) used to measure the gain spectrum.

Fig. 6
Fig. 6

Frequency error vs distance, measured as the standard deviation of the Brillouin frequency shift obtained for 10 and 200 time-averaged traces (blue and red solid lines). Dashed lines: theoretical calculation of the frequency error based on Eq. (8) and on the exponential behavior of the SNR measured in the time-traces at the maximum gain frequency (the attenuation factor α = 0.22 dB/km is obtained from fitting the measured SNR with an exponential curve).

Fig. 7
Fig. 7

Frequency error as a function of the number of time-averaged traces, at a 24.5 km distance. The theoretical curve (dashed line) is calculated using Eq. (8) (for δ = 1 MHz, ΔνB = 58 MHz), based on the SNR calculated at the far fiber end of the time-trace at the peak gain frequency.

Fig. 8
Fig. 8

Measured frequency error vs calculated frequency error (blue dots), when using 200 time-averaged traces. Red dashed line: Ideal case representing no difference between calculated and measured errors.

Fig. 9
Fig. 9

Frequency error as a function of the frequency spacing, at 24.5 km distance and using 200 time-averaged traces. The theoretical curve (dashed line) is calculated using Eq. (8), for ΔνB = 58 MHz and SNR = 9.4 dB.

Fig. 10
Fig. 10

Frequency error as a function of the FWHM Brillouin linewidth, at a 24.5 km distance and using 200 time-averaged traces. The theoretical curve (dashed line) is calculated using Eq. (8), for δ = 1 MHz and SNR = 9.4 dB.

Fig. 11
Fig. 11

Frequency error as a function of the threshold level used for the quadratic fitting, at a 24.5 km distance and using 200 time-averaged traces. The theoretical curve (dashed line) is calculated using Eq. (7), for δ = 1 MHz, ΔνB = 58 MHz and SNR = 9.4 dB.

Fig. 12
Fig. 12

Maximum sensing distance as a function of the frequency uncertainty and spatial resolution. The sensor response is predicted using Eq. (9) with α−1 = 22 km, NAV = 1000, δ = 1 MHz, η = 0.5 and Δz = 2 m, under the realistic condition of a 0 dB SNR measured at the fiber near end (z = 0) with a spatial resolution Δ z 0 = 2 m and N AV 0 = 1.

Tables (1)

Tables Icon

Table 1 Historical Evolution of the Figure-of-merit for Distributed Optical Fiber Sensors Based on Brillouin Optical Time-domain Analysis

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

Δ P s (z)= P s (z)[ exp( g B (z) A eff P P (z)Δz )1 ],
Δ P s (z)= g B (z) A eff P P (z) P s (z)Δz.
Δ P s (z)= g B (z) A eff P Pi exp( α p z ) P si exp[ α s (Lz) ]Δz = g B (z) A eff P Pi P si exp( αL )Δz, for α= α p = α s ,
Δ P s 0 ( z )=Δ P s ( z )exp( α s z )= g B (z) A eff P Pi exp( α p z ) P si exp( α s L )Δz.
Gain( z )= Δ P s 0 ( z ) P si exp( α s L) = g B (z) A eff P Pi exp( α p z )Δz.
Δ P s 0 ( z=L )= g B A eff P Pi P si exp( 2αL )Δz.
σ ν ( z )=σ( z ) 3δΔ ν B 8 2 ( 1η ) 3/2 = 1 SNR( z ) 3δΔ ν B 8 2 ( 1η ) 3/2 ,
σ ν ( z )=σ( z ) 3 4 δΔ ν B = 1 SNR( z ) 3 4 δΔ ν B .
σ ν ( z )= exp(αz) SNR( z=0 ) Δ z 0 Δz N AV 0 N AV 3δΔ ν B 8 2 ( 1η ) 3/2 ,
FoM= ( α L eff ) 2 exp[ (2+ f l )αL ] Δz N Tr N AV δΔ ν B σ ν ,
y(x)=a x 2 +bx+c,
dy dx =2a ν B +b=0 ν B = b 2a .
σ ν 2 = | ν B a | 2 σ a 2 + | ν B b | 2 σ b 2 +2 ν B a ν B b cov a,b ,
σ a 2 = 5 σ 2 4N σ x 4 ,
σ b 2 = σ 2 N σ x 2 ,
σ x 2 = ( N 2 1 ) δ 2 12 ,
σ a 2 = 180 σ 2 N 5 δ 4 ,
σ b 2 = 12 σ 2 N 3 δ 2 .
σ ν 2 = b 2 4 a 4 σ a 2 + 1 4 a 2 σ b 2 = b 2 4 a 4 180 σ 2 N 5 δ 4 + 1 4 a 2 12 σ 2 N 3 δ 2 = σ 2 a 2 N 3 δ 2 [ b 2 4 a 2 180 N 2 δ 2 +3 ] = σ 2 a 2 N 3 δ 2 [ 180 ν B 2 N 2 δ 2 +3 ].
y( x= b 2a )=a ( b 2a ) 2 +b( b 2a )+c=1 b 2 4a +c=1.
y( ν B ± x η )=a ( ν B ± x η ) 2 +b( ν B ± x η )+c=η a= η1 x η 2 .
a= 4( η1 ) N 2 δ 2 .
a= 4( η1 ) N 2 δ 2 = 2 Δ ν B 2 N 2 δ 2 =2Δ ν B 2 ( 1η ).
σ ν 2 = σ 2 δΔ ν B 8 2 ( 1η ) 3/2 [ 180 2( 1η ) ν B 2 Δ ν B 2 +3 ].
σ ν 2 = 3 σ 2 δΔ ν B 8 2 ( 1η ) 3/2 .
σ ν = 3 8 2 ( 1η ) 3/2 δΔ ν B SNR .
σ ν = 1 SNR 3 4 δΔ ν B .
σ ν = 1 SNR 3 4 δ Δ ν B Δ ν B =σ 3 4 Δ ν B N .

Metrics