Abstract

We study the reflectivity spectra of photonic crystal slab cavities using an extension of the scattering matrix method that allows treating finite sizes of the spot of the excitation beam. The details of the implementation of the method are presented and then we show that Fano resonances arise as a consequence of the electromagnetic interference between the discrete contribution of the fundamental cavity mode and the continuum contribution of the light scattered by the photonic crystal pattern. We control the asymmetry lineshape of the Fano resonance through the polarization of the incident field, which determines the relative phase between the two electromagnetic contributions to the interference. We analyse the electric field profile inside and outside of the crystal to help in the understanding of the dependence on polarization of the reflectivity lineshape. We also study with our implementation the dependence of the Fano resonances on the size of the incident radiation spot.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
    [CrossRef]
  2. R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
    [CrossRef]
  3. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev.38, 9945–9951 (1988).
    [CrossRef]
  4. M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
    [CrossRef]
  5. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
    [CrossRef]
  6. A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
    [CrossRef]
  7. J. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express14, 8812–8826 (2006).
    [CrossRef]
  8. S. L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. B. Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express19, 1539–1562 (2011).
    [CrossRef]
  9. J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. S. Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express21, 3243–3252 (2013).
    [CrossRef]
  10. N. Huang, L. J. Martinez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013).
    [CrossRef]
  11. W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
    [CrossRef]
  12. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
    [CrossRef]
  13. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
    [CrossRef]
  14. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
    [CrossRef]
  15. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
    [CrossRef]
  16. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999).
    [CrossRef]
  17. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
    [CrossRef]
  18. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
    [CrossRef]
  19. R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
    [CrossRef]
  20. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
    [CrossRef]
  21. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
    [CrossRef]
  22. P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
    [CrossRef]
  23. E. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett.32, 3137–3139 (2007).
    [CrossRef]
  24. L. Babic and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express18, 26569–26582 (2010).
    [CrossRef]
  25. E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
    [CrossRef]
  26. M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
    [CrossRef]

2013 (4)

J. Deng, S. Hussain, V. S. Kumar, W. Jia, C. E. Png, L. S. Thor, A. A. Bettiol, and A. J. Danner, “Modeling and experimental investigations of Fano resonances in free-standing LiNbO3 photonic crystal slabs,” Opt. Express21, 3243–3252 (2013).
[CrossRef]

N. Huang, L. J. Martinez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013).
[CrossRef]

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

2012 (1)

W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
[CrossRef]

2011 (1)

2010 (3)

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

L. Babic and M. J. A. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express18, 26569–26582 (2010).
[CrossRef]

2009 (1)

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

2008 (1)

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

2007 (5)

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

E. Driessen, D. Stolwijk, and M. J. A. de Dood, “Asymmetry reversal in the reflection from a two-dimensional photonic crystal,” Opt. Lett.32, 3137–3139 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

2006 (2)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
[CrossRef]

J. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, “Tunable Fano resonance in photonic crystal slabs,” Opt. Express14, 8812–8826 (2006).
[CrossRef]

2005 (1)

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

1999 (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

1988 (1)

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev.38, 9945–9951 (1988).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

1949 (1)

R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
[CrossRef]

Abad, J. B.

Adair, R. K.

R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
[CrossRef]

Aers, G. C.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

Andreani, L.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

Babic, L.

Barnthaler, A.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Belotti, M.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Bettiol, A. A.

Biris, C. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Bockeman, C. K.

R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
[CrossRef]

Burgdorfer, J.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Chalcraft, A. R. A.

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Cheung, I. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Chong, Y.

Chua, S. L.

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999).
[CrossRef]

Dalacu, D.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Danner, A. J.

de Dood, M. J. A.

Deng, J.

Ding, W.

W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
[CrossRef]

Driessen, E.

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Fan, S.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Fox, A. M.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

Frédérick, S.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Galli, M.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Gehler, S.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Guimarães, P. S. S.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Hopkinson, M.

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Huang, N.

Husko, C.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Hussain, S.

Inkson, J. C.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev.38, 9945–9951 (1988).
[CrossRef]

Jahromi, R. R. F.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Jia, W.

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Jones, B. D.

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Ko, D. Y. K.

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev.38, 9945–9951 (1988).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Kraus, T. F.

Krauss, T.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Krauss, T. F.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Kuhl, U.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Kumar, V. S.

Kwong, D. L.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Lam, S.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

Lewenkopf, C. H.

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

Libisch, F.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Liu, H. Y.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Luxmoore, I. J.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Martinez, L. J.

McCutcheon, M. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Mendoza, M.

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

O’Brien, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

O’Faolain, L.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Osley, E. J.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Oulton, R.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

Panoiu, N. C.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Peterson, R. E.

R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
[CrossRef]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Png, C. E.

Poole, P. J.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Portalupi, S.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Povinelli, M. L.

Qiu, C. W.

W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
[CrossRef]

Rieger, G. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Rotter, S.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Sahin, M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Sanvitto, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
[CrossRef]

Schulz, P. A.

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

Skolnick, M. S.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

Soljacic, M.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

Song, J.

Stockmann, H. J.

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Stolwijk, D.

Stone, A. D.

Sun, X. W.

Szymanski, D.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

Thompson, P. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Thor, L. S.

Valentim, P. T.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Vallejos, R. O.

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

Vasco, J. P.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

Vinck-Posada, H.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Warburton, P. A.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

Whittaker, D. M.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O’Brien, T. F. Kraus, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation,” Opt. Express15, 17221–17230 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999).
[CrossRef]

Williams, R. L.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Wong, C. W.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Yanchuk, B. L.

W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
[CrossRef]

Yang, X.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Young, J. F.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

Yu, M.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

Yu, M. B.

Zaccaria, R. P.

Appl. Phys. Lett. (5)

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V silicon photonic crystal nanocavities,” Appl. Phys. Lett.91, 051113 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett.87, 221110 (2005).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett.90, 241117 (2007).
[CrossRef]

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimarães, “Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities,” Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Nature (2)

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature450, 857–861 (2007).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. (3)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

R. K. Adair, C. K. Bockeman, and R. E. Peterson, “Experimental corroboration of the theory of neutron resonance scattering,” Phys. Rev.76, 308–308 (1949).
[CrossRef]

D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems,” Phys. Rev.38, 9945–9951 (1988).
[CrossRef]

Phys. Rev. A (1)

W. Ding, B. L. Yanchuk, and C. W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A85, 025806 (2012).
[CrossRef]

Phys. Rev. B (4)

M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, “Fano resonances in the conductance of quantum dots with mixed dynamics,” Phys. Rev. B77, 155307 (2008).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystals slabs,” Phys. Rev. B60, 5751–5758 (1999).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett.110, 087402 (2013).
[CrossRef]

A. Barnthaler, S. Rotter, F. Libisch, J. Burgdorfer, S. Gehler, U. Kuhl, and H. J. Stockmann, “Probing decoherence through Fano resonances,” Phys. Rev. Lett.105, 056801 (2010).
[CrossRef]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr.74, 259–266 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). Photonic crystal slab in the z direction: the layers l = 0, l = 1 (with thickness d) and l = 2 correspond to air, the photonic structure and air, respectively; the incident field is represented by a(0), the reflected one by b(0), and the transmitted one by a(2). (b) Representative scheme of the reflectivity calculation: the subscripts Inc denote the incident quantities, φ is the polarization angle; rs denotes the radius of the incident spot and rf is the radius of the area across which the flux of the Poynting vector is calculated; d0 is the distance at which the crystal is excited which is the same distance at which the reflectivity is calculated.

Fig. 2
Fig. 2

(a) L3 cavity with an outward displacement s = 0.15a of the end lateral holes, where a is the lattice parameter. (b) Electric field vector plot of the fundamental mode. (c) Supercell considered in the SM calculations with superlattice parameter A = 12a. (d) Intensity distribution of the fundamental mode in the supercell environment. The slight asymmetry seen in the mode profile is due to the choice of a hexagonal supercell.

Fig. 3
Fig. 3

Cross-polarized polarization-dependent reflectivity spectra for the polarization angles 0°, 35°, 49°, 52.7°, 55°, 60° and 90°. The Fano lineshape is controlled and reversed by the polarization angle. The right side shows the in-plane electric field components at the reflectivity maximum and minimum points for the 55° case.

Fig. 4
Fig. 4

Electric field profile in the middle of the crystal at the reflectivity maxima of Fig. 3 for the cases φ = 0°, 49°, 55° and 90°. There is a change of the mode phase when the Fano lineshape is reversed.

Fig. 5
Fig. 5

Electric field profile outside the photonic crystal in the planes y = 0 and x = 0 for the cases φ = 49° and φ = 55°. The crystal is indicated with horizontal black lines. The phase of the continuum does not change significantly.

Fig. 6
Fig. 6

Cross-polarized reflectivity spectrum for the cases φ = 55° and φ = 60° at different excitation spot radius rs. The lineshapes become symmetrical when rs is high with respect to the cavity size.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

H ( r | | , z ) = G { ϕ x ( G ) [ x ^ 1 q ( k x + G x ) z ^ ] + ϕ y ( G ) [ y ^ 1 q ( k y + G y ) z ^ ] } e i ( k | | + G ) r | | + i q z ,
[ ( ω 2 𝒦 ) K ] ϕ = q 2 ϕ ,
= ( ε ^ 0 0 ε ^ ) , 𝒦 = ( k ^ x k ^ x k ^ x k ^ y k ^ y k ^ x k ^ y k ^ y ) , 𝒦 = ( k ^ y η ^ k ^ y k ^ y η ^ k ^ x k ^ x η ^ k ^ y k ^ x η ^ k ^ x ) .
( h x ( z ) h y ( z ) ) = h | | ( z ) = Φ [ f ^ ( z ) a + f ^ ( d z ) b ] ,
( e y ( z ) e x ( z ) ) = e | | ( z ) = ( ω 2 𝒦 ) Φ q ^ 1 [ f ^ ( z ) a f ^ ( d z ) b ] .
( e | | ( z ) h | | ( z ) ) = M ( f ^ ( z ) a f ^ ( d z ) b ) ,
M = ( ( ω 2 𝒦 ) Φ q ^ 1 ( ω 2 𝒦 ) Φ q ^ 1 Φ Φ ) .
( a ( l ) b ( l ) ) = S ( l , l ) ( a ( l ) b ( l ) ) = ( S 11 S 12 S 21 S 22 ) ( a ( l ) b ( l ) ) ,
b ( 0 ) = S 21 ( 0 , N ) a ( 0 ) , a ( N ) = S 11 ( 0 , N ) a ( 0 ) ,
H Ref ( r | | ) = G [ h x Ref ( 0 ) G x ^ + h y Ref ( 0 ) G y ^ + h z Ref ( 0 ) G z ^ ] e i ( k | | G ) r | | , H Tra ( r | | ) = G [ h x Tra ( z t ) G x ^ + h y Tra ( z t ) G y ^ + h z Tra ( z t ) G z ^ ] e i ( k | | + G ) r | | ,
P ( r | | ) = G P ˜ ( G ) e i G r | | ,
( e | | h | | ) = ( e y e x h x h y ) = ( E y [ P ˜ ( G 1 ) , P ˜ ( G 2 ) , ] T E x [ P ˜ ( G 1 ) , P ˜ ( G 2 ) , ] T H x [ P ˜ ( G 1 ) , P ˜ ( G 2 ) , ] T H y [ P ˜ ( G 1 ) , P ˜ ( G 2 ) , ] T ) ,
R = | Φ z Ref Φ z Inc | , T = | Φ z Tra Φ z Inc | ,
Φ z = A S z ( r | | ) d a = 1 2 ε 0 ω c A Re { E | | * ( r | | ) × H | | ( r | | ) } d a ,
Φ z = A R O 2 ε 0 ω c Re { e | | h | | } .
Φ z = π r ε 0 ω c G G J 1 ( r | G G | ) | G G | [ e ˜ x * ( G ) h ˜ y ( G ) e ˜ y * ( G ) h ˜ x ( G ) ] ,

Metrics