Abstract

We report concurring phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals. The transitions are induced by photo-stimulation and stable against light and thermal treatments. Photochromic trans- to cis-isomerization of azo-dye induces an augmented dipole moment and strong dipole-dipole interaction of the cis-isomers, resulting in the formation of nano-sized dye-aggregates. Consequent phase separation of the aggregates of a chiral azo-dye induces phase transition from a chiral to nonchiral nematic phase. In addition, the deposition of dye-aggregates at the surfaces brings about anchoring transition of LC molecules. The stability and irreversibility of the transition, together with no need of pretreatments for LC alignment, provide fascinating opportunity for liquid crystal device applications.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications

Yen-Chen Liu, Ko-Ting Cheng, Hsin-Fu Chen, and Andy Ying-Guey Fuh
Opt. Express 22(4) 4404-4411 (2014)

Optical manipulation of nematic colloids at the interfaces in azo-dye-doped liquid crystals

Andy Ying Guey Fuh, Ming-Hsien Li, Te-Wei Chang, Yu-I Lee, and Shing Trong Wu
Appl. Opt. 57(12) 3180-3185 (2018)

Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant

Jia-De Lin, Meng-Hung Hsieh, Guan-Jhong Wei, Ting-Shan Mo, Shuan-Yu Huang, and Chia-Rong Lee
Opt. Express 21(13) 15765-15776 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Takatoh, M. Hasegawa, M. Koden, and N. Itoh, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).
  2. K. Ichimura, “Photoalignment of liquid crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
    [Crossref] [PubMed]
  3. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
    [Crossref]
  4. L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
    [Crossref]
  5. S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
    [Crossref]
  6. E. Ouskova, J. Vapaavuori, and M. Kaivola, “Self-orienting liquid crystal doped with polymer-azo-dye complex,” Opt. Mater. Express 1(8), 1463–1470 (2011).
    [Crossref]
  7. J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
    [Crossref] [PubMed]
  8. C.-Y. Ho and J.-Y. Lee, “Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics,” Liq. Cryst. 37(8), 998–1012 (2010).
    [Crossref]
  9. S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
    [Crossref] [PubMed]
  10. Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
    [Crossref] [PubMed]
  11. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  12. S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
    [Crossref] [PubMed]
  13. X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
    [Crossref] [PubMed]
  14. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
    [Crossref] [PubMed]

2013 (2)

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (2)

C.-Y. Ho and J.-Y. Lee, “Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics,” Liq. Cryst. 37(8), 998–1012 (2010).
[Crossref]

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

2007 (1)

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

2006 (1)

X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
[Crossref] [PubMed]

2002 (1)

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

2000 (2)

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

K. Ichimura, “Photoalignment of liquid crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref] [PubMed]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Aßhoff, S. J.

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Bosco, A.

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Collard, D. M.

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

Cornelissen, J. J. L. M.

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Feringac, B. L.

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Furst, E. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Grzelczak, M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Gvozdovskyy, I.

Ho, C.-Y.

C.-Y. Ho and J.-Y. Lee, “Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics,” Liq. Cryst. 37(8), 998–1012 (2010).
[Crossref]

Iamsaard, S.

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Ichimura, K.

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

K. Ichimura, “Photoalignment of liquid crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref] [PubMed]

Jeng, S.-C.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Kaivola, M.

Kang, S.-W.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Komitov, L.

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Kundu, S.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Kuo, C.-W.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Lee, J.-Y.

C.-Y. Ho and J.-Y. Lee, “Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics,” Liq. Cryst. 37(8), 998–1012 (2010).
[Crossref]

Lee, M.-H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Lee, S. H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Li, Q.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Liao, C.-C.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Liz-Marzán, L. M.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Ouskova, E.

Park, J. O.

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

Serbina, M.

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Srinivasarao, M.

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

Strigazzi, A.

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Tong, X.

X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
[Crossref] [PubMed]

Vapaavuori, J.

Vermant, J.

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Wang, G.

X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
[Crossref] [PubMed]

Wang, H.-L.

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Wang, Y.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Yamaguchi, R.

Yaroshchuk, O.

Zhao, Y.

X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

ACS Nano (1)

M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4(7), 3591–3605 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater. 25(24), 3365–3370 (2013).
[Crossref] [PubMed]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S.-C. Jeng, C.-W. Kuo, H.-L. Wang, and C.-C. Liao, “Nanoparticle-induced vertical alignment in liquid crystal cell,” Appl. Phys. Lett. 91(6), 061112 (2007).
[Crossref]

Chem. Commun. (Camb.) (1)

S. J. Aßhoff, S. Iamsaard, A. Bosco, J. J. L. M. Cornelissen, and B. L. Feringac, “Time-programmed helix inversion in phototunable liquid crystals,” Chem. Commun. (Camb.) 49(39), 4256–4258 (2013).
[Crossref] [PubMed]

Chem. Rev. (1)

K. Ichimura, “Photoalignment of liquid crystal systems,” Chem. Rev. 100(5), 1847–1874 (2000).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

J. Zhou, D. M. Collard, J. O. Park, and M. Srinivasarao, “Reduced fluorescence quenching of cyclodextrin-acetylene dye rotaxanes,” J. Am. Chem. Soc. 124, 9980–9981 (2002).
[Crossref] [PubMed]

X. Tong, G. Wang, and Y. Zhao, “Photochemical phase transition versus photochemical phase separation,” J. Am. Chem. Soc. 128(27), 8746–8747 (2006).
[Crossref] [PubMed]

Liq. Cryst. (2)

C.-Y. Ho and J.-Y. Lee, “Fabrication of pseudo-pi vertical alignment mode liquid crystal devices with ultra-violet polymerisation and investigations of their electro-optical characteristics,” Liq. Cryst. 37(8), 998–1012 (2010).
[Crossref]

L. Komitov, K. Ichimura, and A. Strigazzi, “Light-induced anchoring transition in a 4,4’-disubstited azobenzene nematic liquid crystal,” Liq. Cryst. 27(1), 51–55 (2000).
[Crossref]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 49–50 (1991).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Other (1)

K. Takatoh, M. Hasegawa, M. Koden, and N. Itoh, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Chemical structure of the chiral liquid crystalline azo-dye molecule used for the study.
Fig. 2
Fig. 2 Depolarized optical images of the E.O. cells with 1.0 wt% chiral azo-dye in the MLC 6608. Each image represents macroscopic images before (a) and after (c) UV-irradiation, POM texture for the unexposed (b), border (d), exposed (e) areas, and conoscopic figure for a dark region.
Fig. 3
Fig. 3 POM images of the E.O. cells with a planar and homeotropic anchoring conditions: 1.0 wt% (a, b) and 3.0 wt% (c, d) of the chiral azo-dye in host LCs. Cholesteric streaks in (a) formed after UV-irradiation can be annihilated by a mechanical stress and turn to the homeotropic state (b). The initial cholesteric planar state is transformed to the fingerprint texture (d) after UV-irradiation.
Fig. 4
Fig. 4 POM images for E.O. switching of the cell: (a) Bright state obtained from Fig. 2(e) by applying 3.0 Vpp, (b) homeotropic state observed after a complete removal of LCs and reloading of a fresh LC, and (c) uniform bright state switched from (b) by applying 5.0 Vpp.

Metrics