Abstract

Because of their non-diffraction and freely acceleration during propagation, finite energy Airy beams are interesting for application such as optical manipulation, plasma channel generation and optical vortex generation. Especially interesting are tunable/switchable Airy beams, in which the Airy beam tuning by electric field, temperature or optical intensity can be realized. Here we experimentally demonstrate polarization-independent, electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystals with wide working temperature range and fast response time through a structure called vertical field driven mode.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization independent Fabry-Pérot filter based on polymer-stabilized blue phase liquid crystals with fast response time

Yan-Han Chen, Chun-Ta Wang, Chin-Ping Yu, and Tsung-Hsien Lin
Opt. Express 19(25) 25441-25446 (2011)

Fast switchable optical vortex generator based on blue phase liquid crystal fork grating

Shi-Jun Ge, Wei Ji, Guo-Xin Cui, Bing-Yan Wei, Wei Hu, and Yan-Qing Lu
Opt. Mater. Express 4(12) 2535-2541 (2014)

A vertical-field-driven polymer-stabilized blue phase liquid crystal mode to obtain a higher transmittance and lower driving voltage

Yong-Hun Kim, Sung-Taek Hur, Chang-Sub Park, Kyung-Woo Park, Suk-Won Choi, Shin-Won Kang, and Hak-Rin Kim
Opt. Express 19(18) 17427-17438 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [Crossref] [PubMed]
  2. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
    [Crossref]
  3. J. Yan and S. T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
    [Crossref]
  4. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [Crossref]
  5. L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
    [Crossref]
  6. L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(3), 3143–3148 (2010).
    [Crossref] [PubMed]
  7. C. H. Lin, Y. Y. Wang, and C. W. Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36(4), 502–504 (2011).
    [Crossref] [PubMed]
  8. H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
    [Crossref]
  9. G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
    [Crossref]
  10. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [Crossref]
  11. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  12. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [Crossref] [PubMed]
  13. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  14. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [Crossref]
  15. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
    [Crossref] [PubMed]
  16. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010).
    [Crossref] [PubMed]
  17. H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals,” Opt. Express 17(22), 19365–19370 (2009).
    [Crossref] [PubMed]
  18. D. Luo, H. T. Dai, X. W. Sun, and H. V. Demir, “Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode,” Opt. Commun. 283(20), 3846–3849 (2010).
    [Crossref]
  19. L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
    [Crossref]
  20. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
    [Crossref] [PubMed]
  21. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
    [Crossref]
  22. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
    [Crossref]
  23. Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
    [Crossref]

2013 (1)

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

2012 (1)

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

2011 (5)

2010 (7)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

D. Luo, H. T. Dai, X. W. Sun, and H. V. Demir, “Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode,” Opt. Commun. 283(20), 3846–3849 (2010).
[Crossref]

L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
[Crossref]

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(3), 3143–3148 (2010).
[Crossref] [PubMed]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010).
[Crossref] [PubMed]

2009 (3)

H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals,” Opt. Express 17(22), 19365–19370 (2009).
[Crossref] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

2008 (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2005 (2)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Chen, K. M.

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Chen, Y.

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Cheng, H. C.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Cui, H. Q.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Dai, H. T.

Demir, H. V.

D. Luo, H. T. Dai, X. W. Sun, and H. V. Demir, “Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode,” Opt. Commun. 283(20), 3846–3849 (2010).
[Crossref]

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Gauza, S.

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Ge, Z.

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(3), 3143–3148 (2010).
[Crossref] [PubMed]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Haseba, Y.

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Hsieh, C. W.

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Hu, W.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Ishinabe, T.

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

Jiao, M.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kikuchi, H.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Li, J. N.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Li, Y.

Lin, C. H.

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Lin, X. W.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Liu, Y. J.

Lu, Y. Q.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Luo, D.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Rao, L.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
[Crossref]

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(3), 3143–3148 (2010).
[Crossref] [PubMed]

Shen, D.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Sun, X. W.

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

Wang, H. F.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Wang, Y. Y.

Wu, S. T.

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

J. Yan and S. T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
[Crossref]

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

L. Rao, Z. Ge, and S. T. Wu, “Viewing angle controllable displays with a blue-phase liquid crystal cell,” Opt. Express 18(3), 3143–3148 (2010).
[Crossref] [PubMed]

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
[Crossref]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Xu, D.

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

Yamamoto, S.

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Yan, J.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

J. Yan and S. T. Wu, “Polymer-stabilized blue phase liquid crystals: a tutorial [Invited],” Opt. Mater. Express 1(8), 1527–1535 (2011).
[Crossref]

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
[Crossref]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Zheng, Z. G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Zhu, G.

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Adv. Mater. (1)

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. 17(1), 96–98 (2005).
[Crossref]

Appl. Phys. Lett. (5)

H. C. Cheng, J. Yan, T. Ishinabe, and S. T. Wu, “Vertical field switching for blue-phase liquid crystal devices,” Appl. Phys. Lett. 98(26), 261102 (2011).
[Crossref]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[Crossref]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[Crossref]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[Crossref]

Y. Chen, D. Xu, S. T. Wu, S. Yamamoto, and Y. Haseba, “A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 102(14), 141116 (2013).
[Crossref]

J. Disp. Technol. (1)

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Hysteresis effects in blue-phase liquid crysals,” J. Disp. Technol. 6(8), 318–322 (2010).
[Crossref]

J. Soc. Inf. Disp. (2)

L. Rao, J. Yan, and S. T. Wu, “Prospects of emerging polymer-stabilized blue-phase liquid-crystal displays,” J. Soc. Inf. Disp. 18(11), 954–959 (2010).
[Crossref]

G. Zhu, J. N. Li, X. W. Lin, H. F. Wang, W. Hu, Z. G. Zheng, H. Q. Cui, D. Shen, and Y. Q. Lu, “Polarization-independent blue-phase liquid crystal gratings driven by vertical electric field,” J. Soc. Inf. Disp. 20(6), 341–346 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

L. Rao, Z. Ge, S. Gauza, K. M. Chen, and S. T. Wu, “Emerging liquid crystal displays based on the Kerr effect,” Mol. Cryst. Liq. Cryst. 527(1), 30–42 (2010).
[Crossref]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[Crossref]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436(7053), 997–1000 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Luo, H. T. Dai, X. W. Sun, and H. V. Demir, “Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode,” Opt. Commun. 283(20), 3846–3849 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 2D ideal Airy beam and (b) 2D finite Airy beam with a = 0.1.
Fig. 2
Fig. 2 (a) Schematic drawings of the PS-BPLC in glass cell with 2D binary-phase of Airy wave packet with cubic phase modulation patterned ITO. (b) Refractive index ellipsoid of PS-BPLC under applied electric field. The cell gap is d = 8μm.
Fig. 3
Fig. 3 Images of PS-BPLC cell under optical microscope with cross polarizers under temperature of (a) 33 °C and (b) 39 °C.
Fig. 4
Fig. 4 Optical setup of Airy beam generation.
Fig. 5
Fig. 5 Image of PS-BPLC cell at different voltages (a) 35 V, (b) 85 V, (c) 100 V, and (d) 120 V. Corresponding Airy beams captured by CCD are shown in (e)-(f), respectively. Scale bar: 500 μm.
Fig. 6
Fig. 6 Response time of the PS-BPLC Airy beam sample with rise time τrise = 526 μs and decay time τdecay = 678 μs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ(s,ξ=0)=Ai(s)exp(as),
ϕ(ξ,s)=Ai[s (ξ/2) 2 +iaξ]exp[as(a ξ 2 /2) i( ξ 3 /12)+i( a 2 ξ/2)+i(sξ/2)].
Γ= 2π λ [ n o ( E ) n i ]d,

Metrics