Abstract

We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg and W. Margulis, “Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber,” Opt. Lett.11, 516–518 (1986).
    [CrossRef]
  2. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16, 1732–1734 (1991).
    [CrossRef]
  3. J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.
  4. P. G. Kazansky, A. Kamal, and P. S. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett.18, 693–695 (1993).
    [CrossRef]
  5. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
    [CrossRef]
  6. A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
    [CrossRef]
  7. K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3-TeO2 glass,” Opt. Lett.25, 251–253 (2000).
    [CrossRef]
  8. Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
    [CrossRef]
  9. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett.31, 3492–3494 (2006).
    [CrossRef] [PubMed]
  10. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
    [CrossRef]
  11. D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
    [CrossRef]
  12. T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
    [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  14. X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
    [CrossRef]
  15. M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).
  16. M. Malmström, O. Tarasenko, and W. Margulis, “Pulse selection at 1MHz with electro optic fiber switch,” Opt. Express20, 9465–9470 (2012).
    [CrossRef]
  17. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
    [CrossRef] [PubMed]
  18. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092, (2007).
    [CrossRef] [PubMed]
  19. M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber mach-zehnder interferometer for electro-optic switching,” Opt. Lett.27, 1643–1645 (2002).
    [CrossRef]

2012 (1)

2009 (1)

2007 (1)

2006 (2)

2004 (1)

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

2002 (1)

2001 (2)

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
[CrossRef]

1998 (1)

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

1993 (1)

1991 (1)

1986 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Asimakis, S.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Belardi, W.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Berlemont, D.

Biswas, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

Brueck, S. R. J.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett.16, 1732–1734 (1991).
[CrossRef]

Busacca, A.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Camerlingo, A.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Carvalho, I. C. S.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

Claesson, Å.

Cooper, M.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092, (2007).
[CrossRef] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Faccio, D.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

Feng, X.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Feng, Xian

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Finazzi, V.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Fokine, M.

M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber mach-zehnder interferometer for electro-optic switching,” Opt. Lett.27, 1643–1645 (2002).
[CrossRef]

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Frampton, K.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Frauenglass, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

Fujita, K.

Garcia, F. C.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

Grappe, B.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Guang, Y.

Guorong, C.

Helander, P.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Hering, E.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

Hirao, K.

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3-TeO2 glass,” Opt. Lett.25, 251–253 (2000).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
[CrossRef]

Huidan, Z.

Jing, R.

Kamal, A.

Kazansky, P. G.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

P. G. Kazansky, A. Kamal, and P. S. J. Russell, “High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation,” Opt. Lett.18, 693–695 (1993).
[CrossRef]

Kjellberg, L.

M. Fokine, L. E. Nilsson, Å. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber mach-zehnder interferometer for electro-optic switching,” Opt. Lett.27, 1643–1645 (2002).
[CrossRef]

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Krummenacher, L.

Leong, J. Y.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Lesche, B.

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

Loh, W.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Luo, Y.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

Malmström, M.

Margulis, W.

Margulius, W.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Monro, T. M.

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092, (2007).
[CrossRef] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Moore, R. C.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Mukherjee, N.

Murai, S.

Myers, R. A.

Myrén, N.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Narazaki, A.

K. Tanaka, A. Narazaki, and K. Hirao, “Large optical second-order nonlinearity of poled WO3-TeO2 glass,” Opt. Lett.25, 251–253 (2000).
[CrossRef]

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
[CrossRef]

Nilsson, L. E.

Norin, L.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Olsson, H.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Österberg, U.

Pannell, C. N.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Parmigiani, F.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Petropoulos, P.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Petrovich, M.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Poletti, F.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Ponzo, G.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Price, J. H. V.

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Pruneri, V.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

Richardson, D.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Richardson, D. J.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Russell, P. S. J.

Sjödin, N.

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

Soga, N.

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
[CrossRef]

Tanaka, K.

Tarasenko, O.

Tsujiie, Y.

Warren-Smith, S. C.

White, N.

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, and B. Lesche, “Inducing a large second-order optical nonlinearity in soft glasses by poling,” Appl. Phys. Lett.72, 3252–3254 (1998).
[CrossRef]

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett.84, 4935–4937 (2004).
[CrossRef]

Electron. Lett. (1)

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett.37, 107–108 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Narazaki, K. Tanaka, K. Hirao, and N. Soga, “Induction and relaxation of optical second-order nonlinearity in tellurite glasses,” J. Appl. Phys.85, 2046–2051 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Photonics Technol. Lett. (1)

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” Photonics Technol. Lett.13, 981–983 (2001).
[CrossRef]

Other (4)

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

X. Feng, G. Ponzo, F. Poletti, A. Camerlingo, F. Parmigiani, M. Petrovich, P. Petropoulos, N. White, W. Loh, and D. Richardson, “A single-mode, high index-contrast, lead silicate glass fibre with high nonlinearity, broadband near-zero dispersion at telecommunication wavelengths,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), pp. 1–3.
[CrossRef]

M. Fokine, L. Kjellberg, P. Helander, N. Myrén, L. Norin, H. Olsson, N. Sjödin, and W. Margulius, “A fibre-based kerr switch and modulator,” in 30th European Conference on Optical Communications (ECOC2004), Stockholm, Sweden (2004).

J. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heidepriem, R. C. Moore, K. Frampton, V. Finazzi, Xian Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, “A lead silicate holey fiber with γ= 1820 W−1km−1at 1550 nm,” in The Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference(2005), PDP22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of proposed fibre geometry. Electrode holes left and right, wagon wheel microstructure in center.

Fig. 2
Fig. 2

Top Left: optical micrograph of fibre cross section. Top Right: image of fundamental mode as imaged on a CCD. Bottom: fibre with electrodes inserted.

Fig. 3
Fig. 3

Mach-Zehnder interferometer characterization setup. L1 4: lens. FP: fiber inline polarizer. Ref.: free space reference arm. FUT: fiber under test. PD: photo detector. HW1 3: half wave plates. HV: high power supply. MOD: modulator. Black lines: polarization maintaining fibers. Green lines: electrical wires.

Fig. 4
Fig. 4

Experimental confirmation of the nonlinear phase change as a function of bias voltage with 200 V modulation.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ n χ ( 3 ) 2 n ( E D C 2 + E D C E ( t ) ) ,
Δ ψ = 2 π L Δ n λ .
V π V DC = λ n L d eff 2 χ ( 3 )
V π 1 V π 2 = χ 2 ( 3 ) χ 1 ( 3 ) n 1 n 2 d eff 1 2 d eff 2 2 ,
V = E x ε r d glassclad 2 + E x d air 2 + E x ε r d glasscore + E x d air 2 + E x ε r d glassclad 2 = E x ε r d glassclad + E x d air + E x ε r d glasscore
ε r V E x = d glassclad + d glasscore + ε r d air V E core = d glass + ε r d air
χ eff ( 2 ) = 3 E DC χ ( 3 ) .
E x 1 = P x 1 exp ( i ϕ x 1 ) ,
E y 1 0 ,
E x 2 = P x 2 exp ( i ϕ x 2 + i ψ x ) ,
E y 2 = P y 2 exp ( i ϕ y 2 + i ψ y ) ,
P x = P x 1 + P x 2 + 2 P x 1 P x 2 cos ( Δ ϕ + Δ ψ ) ,
P y = P y 2 ,
P off = P x 1 + 1.1 P x 2 + 2 P x 1 P x 2 cos ( Δ ϕ ) ,
P on = P x 1 + 1.1 P x 2 + 2 P x 1 P x 2 cos ( Δ ϕ + Δ ψ ) .
cos ( Δ ϕ ) = P off P x 1 1.1 P x 2 2 P x 1 P x 2 ,
cos ( Δ ϕ + Δ ψ ) = P on P x 1 1.1 P x 2 2 P x 1 P x 2 .
V DC d eff = E DC .
C = ε 0 ε r A d ,

Metrics