Abstract

We investigate the excitation power dependence of fluorescent emission from Cy3-tagged molecules separated from an Ag film prepatterned with arrays of nanostructures by a thin spacer. While the fluorescent intensities from both the patterned area and the flat Ag surfaces increase monotonically with the power of excitation light, the fluorescent contrast between them decreases with excitation power in a nonlinear fashion. We propose a simple theoretical model which includes basic properties of molecular fluorescence, the effect of near field enhancement from surface plasmon excited on the patterned structure, and the effect of enhancement of fluorescent emission rate and non-radiative decay rate. Our results agree qualitatively with the prediction of a model for which there is a larger enhancement of the excitation rate than that of the total decay rate of the excited molecule.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
    [CrossRef]
  2. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
    [CrossRef]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
    [CrossRef]
  4. S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
    [CrossRef]
  5. S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
    [CrossRef] [PubMed]
  6. G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008).
    [CrossRef]
  7. E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).
  8. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005).
    [CrossRef]
  9. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
    [CrossRef]
  10. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009).
    [CrossRef] [PubMed]
  11. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
    [CrossRef] [PubMed]
  12. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  13. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
    [CrossRef]
  14. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  15. S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
    [CrossRef]
  16. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
    [CrossRef] [PubMed]
  17. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  18. G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).
  19. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
    [CrossRef] [PubMed]
  20. T. Pistor, “Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program,” UCB/ERL M97/52, EECS Department, UC Berkeley (1997).
  21. R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999).
    [CrossRef]

2011 (1)

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

2010 (1)

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

2009 (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

2008 (5)

S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
[CrossRef] [PubMed]

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008).
[CrossRef]

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

2007 (2)

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
[CrossRef]

2005 (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

2000 (1)

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

1999 (1)

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999).
[CrossRef]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Amos, R. M.

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999).
[CrossRef]

Aspuru-Guzik, A. A.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Barnes, W. L.

G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008).
[CrossRef]

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

Bokor, J.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Boriskina, S. V.

Cabrini, S.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Choo, H.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Chu, Y.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Crozier, K. B.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Dal Negro, L.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).

Fort, E.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

García-Parajó, M. F.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Gersen, H.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Glucksburg, M. R.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

Golden, G.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Gopinath, A.

Gresillon, S.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Guan, P.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Guo, S.-H.

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
[CrossRef] [PubMed]

Hall, W. P.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

Heetderks, J. J.

Hicks, E. M.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

Hu, Y. S.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Jäckel, F.

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
[CrossRef]

Kan, H.-C.

S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
[CrossRef] [PubMed]

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Kinkhabwala, A. A.

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
[CrossRef]

Kuipers, L.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

Lyandres, O.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Neaton, J. B.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Novotny, L.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Phaneuf, R. J.

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Qin, D.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Rappoport, D.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Reinhard, B. M.

Saikin, S. K.

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005).
[CrossRef]

Schuck, P. J.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Tsai, D.-H.

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

Tsai, S.-J.

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

Van Duyne, R. P.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

van Hulst, N. F.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Veerman, J. A.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

Wallace, P. M.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).

Yu, Q.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zachariah, M. R.

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

Zayak, A. T.

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Zirubuabts, G.

G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008).
[CrossRef]

Zou, S.

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005).
[CrossRef]

Adv. Mater. (1)

S.-H. Guo, S.-J. Tsai, H.-C. Kan, D.-H. Tsai, M. R. Zachariah, and R. J. Phaneuf, “The Effect of an Active Substrate on Nanoparticle-Enhanced Fluorescence,” Adv. Mater.20(8), 1424–1428 (2008).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem.298(1), 1–24 (2001).
[CrossRef] [PubMed]

Anal. Chem. (1)

C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem.77(17), 338A–346A (2005).
[CrossRef]

Chem. Phys. Lett. (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett.403(1-3), 62–67 (2005).
[CrossRef]

F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett.446(4-6), 339–343 (2007).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998).
[CrossRef]

J. Phys. Chem. (1)

E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksburg, and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography,” J. Phys. Chem.111, 4116–4124 (2007).

J. Phys. Chem. Lett. (1)

S. K. Saikin, Y. Chu, D. Rappoport, K. B. Crozier, and A. A. Aspuru-Guzik, “Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates,” J. Phys. Chem. Lett.1(18), 2740–2746 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Nano Lett. (1)

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays,” Nano Lett.8(7), 1923–1928 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

New J. Phys. (1)

G. Zirubuabts and W. L. Barnes, “Fluorescence enhancement through modified dye molecule absorption associated with localized surface plasmon resonance of metallic dimmers,” New J. Phys.10(10), 105002 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep.4, 197–287 (1984).

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. B (1)

R. M. Amos and W. L. Barnes, “Modification of spontaneous emission lifttimes in the presence of corrugated metallic surfaces,” Phys. Rev. B59(11), 7708–7714 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the Angular Emission of a Single Molecule,” Phys. Rev. Lett.85(25), 5312–5315 (2000).
[CrossRef] [PubMed]

A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys.57(3), 783–826 (1985).
[CrossRef]

Other (1)

T. Pistor, “Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program,” UCB/ERL M97/52, EECS Department, UC Berkeley (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of a simple model of surface enhanced fluorescence (SEF) of molecules coated on nanostructured metal substrate. (a) Cross-sectional view of the metal substrate with area patterned with nanostructures (corrugation on the right). The dotted line represents fluorescent molecules coated on top of the substrate with a spacer layer (not shown) in between. (b) and (c) are the Jablonski diagrams for fluorescence of molecules on the flat area and patterned area, respectively. (d)-(f): the fluorescent intensity emitted from molecules on the patterned area IF,P (thin solid curve) and that from the flat area IF,S (dashed curve), and the fluorescent contrast CF (thick solid curve) plotted as a function of the excitation light intensity Iex, for the case of (d) enhancement of excitation rate larger than enhancement of total decay rate, (e) the opposite of (d), and (f) the case of constant CF.

Fig. 2
Fig. 2

(a) Schematic of the sample design in a cross-sectional view. (b) AFM image of Ag film structure scanned in the area of 400nm size pit array (upper part) and a height profile across the pit along the dashed line indicated above (lower part). (c)-(f) SEM images of the square pit array structures on the Ag film. The nominal ratio of the pit size to center-to-center spacing between neighboring pits is indicated in each panel.

Fig. 3
Fig. 3

Schematic of fluorescent measurement setup: Solid arrows indicate the optical path for the incident light and dashed arrows indicate the optical path for collection of the fluorescent light.

Fig. 4
Fig. 4

(a) Fluorescent image of Cy3 tagged-molecules coated Ag nano-pit array. The power of the focused excitation beam is 5.8μW. Each square consists of an array of square pits. The pit sizes for the top row from left to right are 400nm, 300nm, and 250nm, for the middle row: 200nm, 175nm 150nm, 125nm, and for the bottom row: 100nm 75nm. The overall size of each array is 7.5 μm. (b) Intensity line profiles scanned across pit arrays in (a). The top, middle, and bottom curves correspond to scans from left to right across arrays in the top, middle, bottom row, respectively. (c) The fluorescent contrast of the pit array (filled triangles) and calculated incident light E-field enhancement of the pit structure (open triangles) plotted as a function of pit size. The dashed line represents the results of including the field strength near the vertical side walls of the pits. (d) Calculated |E|2 distribution of the incident light (532nm wavelength in vacuum) on pit array. Panels in the top row show the |E|2 distribution on an incident plane across pit center of a unit cell of the pit array. The incident orientation and the E-field polarization are indicated in the right-most panel.|E|2 of the incident light is set to unity. The size of the pit is labeled at the bottom of each panel. The pit edges are designed with finite curvature according to FESEM images of the pit structure. Corresponding panels in the bottom row show |E|2 distribution at positions 8 nm above the Ag surfaces shown in the top row.

Fig. 5
Fig. 5

Excitation power dependence of (a) the fluorescent intensity and (b) the fluorescent contrast measured from the patterned area of the Ag film substrate. Plot with small, middle size, and large triangles represent the data measured with the excitation power equals to 2.0 μW, 5.8 μW, and 10.8 μW, respectively. (c) The Excitation power dependence of the fluorescent intensity of the 175 nm size pit array (filled circles), the fluorescent intensity of flat Ag film (filled squares), and the fluorescent contrast between the two (open diamonds) plotted as a function of excitation power. The solid curve represents a best fit to the fluorescent contrast data with the functional form of Eq. (6). (d), (e) and (f) Estimated fluorescent emission factor e2, the ratio e1 and η as a function of the pit size, respectively. In (f) open circles (squares) represent results using the calculated incident field enhancement factor in Fig. 4(c) without (with) the contribution of the sidewalls. The error bars in panel (d), (e) and (f) result from propagation of errors of fitting parameters in Eq. (6).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I F , S = σ I e x k e σ I e x + k e + k n
I F , P = e 1 σ I e x e 2 k e e 1 σ I e x + e 2 k e + e n k n
C F I F , P I F , S = e 1 e 2 σ I e x + e 1 e 2 ( k e + k n ) e 1 σ I e x + ( e 2 k e + e n k n )
C F = e 2 σ I e x + ϕ S σ I e x + ϕ P / e 1
C F = I F , P I b k g I F , S I b k g
C F ( I ) = b I + c a I + 1

Metrics