Abstract

Abstract: We propose a two-dimensional (2D) and three-dimensional (3D) convertible bi-sided integral imaging. The proposed system uses the polarization state of projected light for switching its operation mode between 2D and 3D modes. By using an optical module composed of two scattering polarizers and one linear polarizer, the proposed integral imaging system simultaneously provides 3D images with 2D background images for observers who are located in the front and the rear sides of the system. The occlusion effect between 2D images and 3D images is realized by using a compensation mask for 2D images and the elemental images. The principle of proposed system is experimentally verified.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today66(4), 36–41 (2013).
    [CrossRef]
  2. B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).
  3. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
    [CrossRef] [PubMed]
  4. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
    [CrossRef]
  5. A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE5291, 279–284 (2004).
    [CrossRef]
  6. G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris. CR (East Lansing, Mich.)146, 446–451 (1908).
  7. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
    [CrossRef]
  8. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
    [CrossRef] [PubMed]
  9. Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
    [CrossRef]
  10. B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett.26(19), 1481–1482 (2001).
    [CrossRef] [PubMed]
  11. H. Kakeya, S. Sawada, Y. Ueda, and T. Kurokawa, “Integral volumetric imaging with dual layer fly-eye lenses,” Opt. Express20(3), 1963–1968 (2012).
    [CrossRef] [PubMed]
  12. J. Hong, S.-W. Min, and B. Lee, “Bi-sided volumetric display system utilizing the reflective and transmissive fields of integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DMC5.
    [CrossRef]
  13. J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
    [CrossRef]
  14. S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp.1459–1460.
  15. J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
    [CrossRef] [PubMed]
  16. H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
    [CrossRef] [PubMed]
  17. S. G. Park, J.-H. Kim, and S.-W. Min, “Polarization distributed depth map for depth-fused three-dimensional display,” Opt. Express19(5), 4316–4323 (2011).
    [CrossRef] [PubMed]
  18. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
    [CrossRef]
  19. J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
    [CrossRef] [PubMed]
  20. K. Hong, J. Hong, J.-H. Jung, J.-H. Park, and B. Lee, “Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging,” Opt. Express18(11), 12002–12016 (2010).
    [CrossRef] [PubMed]
  21. D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
    [CrossRef]
  22. Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
    [CrossRef]
  23. S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
    [CrossRef]
  24. Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
    [CrossRef] [PubMed]
  25. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express12(6), 1077–1083 (2004).
    [CrossRef] [PubMed]
  26. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt.45(36), 9132–9139 (2006).
    [CrossRef] [PubMed]
  27. S.- Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea14(2), 121–126 (2010).
    [CrossRef]
  28. D.-H. Shin, B. Lee, and E.-S. Kim, “Effect of illumination in an integral imaging system with large depth of focus,” Appl. Opt.44(36), 7749–7753 (2005).
    [CrossRef] [PubMed]
  29. H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express13(15), 5769–5776 (2005).
    [CrossRef] [PubMed]
  30. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt.45(36), 9066–9078 (2006).
    [CrossRef] [PubMed]
  31. J.-H. Jung, J. Kim, and B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett.38(1), 76–78 (2013).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

H. Kakeya, S. Sawada, Y. Ueda, and T. Kurokawa, “Integral volumetric imaging with dual layer fly-eye lenses,” Opt. Express20(3), 1963–1968 (2012).
[CrossRef] [PubMed]

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

2011 (3)

2010 (3)

2009 (2)

2008 (1)

2007 (2)

D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

2006 (4)

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt.45(36), 9132–9139 (2006).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt.45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2001 (1)

1978 (1)

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

1908 (1)

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris. CR (East Lansing, Mich.)146, 446–451 (1908).

Arai, J.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Chen, N.

Cho, S.-W.

Cho, Y.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Choi, H.

Choi, H.-J.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Hahn, J.

Hahn, M.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Hong, J.

Hong, J.-H.

Hong, K.

Hwang, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

Igarashi, Y.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Jang, J.-S.

Javidi, B.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express12(6), 1077–1083 (2004).
[CrossRef] [PubMed]

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Jung, J.-H.

Jung, S.

Kakeya, H.

Kawai, H.

Kim, E.-S.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Effect of illumination in an integral imaging system with large depth of focus,” Appl. Opt.44(36), 7749–7753 (2005).
[CrossRef] [PubMed]

Kim, H.

Kim, J.

Kim, J.-H.

Kim, Y.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express13(15), 5769–5776 (2005).
[CrossRef] [PubMed]

Kurokawa, T.

Lee, B.

B. Lee, “Three-dimensional displays, past and present,” Phys. Today66(4), 36–41 (2013).
[CrossRef]

J.-H. Jung, J. Kim, and B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett.38(1), 76–78 (2013).
[CrossRef] [PubMed]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

K. Hong, J. Hong, J.-H. Jung, J.-H. Park, and B. Lee, “Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging,” Opt. Express18(11), 12002–12016 (2010).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express13(15), 5769–5776 (2005).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Effect of illumination in an integral imaging system with large depth of focus,” Appl. Opt.44(36), 7749–7753 (2005).
[CrossRef] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett.26(19), 1481–1482 (2001).
[CrossRef] [PubMed]

Lee, S.-D.

Lee, S.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris. CR (East Lansing, Mich.)146, 446–451 (1908).

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Min, S.-W.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

S. G. Park, J.-H. Kim, and S.-W. Min, “Polarization distributed depth map for depth-fused three-dimensional display,” Opt. Express19(5), 4316–4323 (2011).
[CrossRef] [PubMed]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

S.- Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea14(2), 121–126 (2010).
[CrossRef]

J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010).
[CrossRef] [PubMed]

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

B. Lee, S. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett.26(19), 1481–1482 (2001).
[CrossRef] [PubMed]

Murata, H.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Nojiri, Y.

Okano, F.

Okui, M.

Park, J. B.

Park, J.-H.

Park, K. S.

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

Park, S.-

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

S.- Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea14(2), 121–126 (2010).
[CrossRef]

Park, S. G.

Sawada, S.

Seo, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

Shin, D.-H.

D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Effect of illumination in an integral imaging system with large depth of focus,” Appl. Opt.44(36), 7749–7753 (2005).
[CrossRef] [PubMed]

Song, B.-S.

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

Sullivan, A.

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE5291, 279–284 (2004).
[CrossRef]

Ueda, M.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Ueda, Y.

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Yang, H. K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

Yeom, J.

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

ACM Trans. Graph. (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph.26(3), 40 (2007).
[CrossRef]

Appl. Opt. (8)

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt.48(34), H77–H94 (2009).
[CrossRef] [PubMed]

J.-H. Jung, Y. Kim, Y. Kim, J. Kim, K. Hong, and B. Lee, “Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure,” Appl. Opt.48(5), 998–1007 (2009).
[CrossRef] [PubMed]

H. Choi, J. Kim, S.-W. Cho, Y. Kim, J. B. Park, and B. Lee, “Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel,” Appl. Opt.47(13), 2207–2214 (2008).
[CrossRef] [PubMed]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011).
[CrossRef] [PubMed]

Y. Kim, S. G. Park, S.-W. Min, and B. Lee, “Projection-type integral imaging system using multiple elemental image layers,” Appl. Opt.50(7), B18–B24 (2011).
[CrossRef] [PubMed]

M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt.45(36), 9132–9139 (2006).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Effect of illumination in an integral imaging system with large depth of focus,” Appl. Opt.44(36), 7749–7753 (2005).
[CrossRef] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt.45(36), 9066–9078 (2006).
[CrossRef] [PubMed]

Comptes Rendus Acad. Sci., Paris. CR (East Lansing, Mich.) (1)

G. Lippmann, “La photograhie integrale,” Comptes Rendus Acad. Sci., Paris. CR (East Lansing, Mich.)146, 446–451 (1908).

J. Disp. Technol. (1)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol.8(2), 70–78 (2012).
[CrossRef]

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (3)

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45(28), L744–L747 (2006).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys.44(2), L71–L74 (2005).
[CrossRef]

Opt. Commun. (1)

D.-H. Shin, S.-H. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun.275(2), 330–334 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today66(4), 36–41 (2013).
[CrossRef]

Proc. IEEE (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE94(3), 591–607 (2006).
[CrossRef]

Proc. SPIE (2)

J. Yeom, J. Hong, S.- Park, S.-W. Min, and B. Lee, “Bi-directional two-dimensional/three-dimensional convertible integral imaging using scattering polarizer,” Proc. SPIE8498, 84980P (2012).
[CrossRef]

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE5291, 279–284 (2004).
[CrossRef]

Other (3)

B. Javidi and F. Okano, eds., Three Dimensional Television, Video, and Display Technology (Springer, 2002).

S. T. de Zwart, W. L. Ijzerman, T. Dekker, and W. A. M. Wolter, “A 20-in. switchable auto-stereoscopic 2D/3D display,” in Proceedings of International Display Workshops (Society for Information Display, 2004), pp.1459–1460.

J. Hong, S.-W. Min, and B. Lee, “Bi-sided volumetric display system utilizing the reflective and transmissive fields of integral imaging,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DMC5.
[CrossRef]

Supplementary Material (4)

» Media 1: MOV (1992 KB)     
» Media 2: MOV (1567 KB)     
» Media 3: MOV (1992 KB)     
» Media 4: MOV (1567 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The concept of the 2D/3D convertible bi-sided InIm.

Fig. 2
Fig. 2

The schematic diagram of the proposed system.

Fig. 3
Fig. 3

The functions of the scattering polarizer: when the incident light is polarized with (a) scattering polarization, and (b) transmitting polarization.

Fig. 4
Fig. 4

The principles of 2D/3D convertibility in the proposed system: (a) the configuration based on the transmission-type InIm, and (b) the reflection-type InIm.

Fig. 5
Fig. 5

The principles of the 3D mode operation in detail.

Fig. 6
Fig. 6

The translucent problem in 3D on 2D mode.

Fig. 7
Fig. 7

The demonstration of the compensation method in 3D on 2D mode: when 3D images are (a) real images and (b) virtual images.

Fig. 8
Fig. 8

The effect of motion parallax in the reconstructed images with the proposed compensation methods: left and right view images when (a) 2D images and the elemental images of Fig. 7(a) are used, and (b) the elemental images of Fig. 7(b) are only used.

Fig. 9
Fig. 9

The experimental setup and the projected images: (a) the picture of experimental setup, (b) projected images for 2D mode and 3D mode experiments.

Fig. 10
Fig. 10

Experimental results: (a) 2D mode operation and (b) 3D mode operation.

Fig. 11
Fig. 11

Experiments for the uniform intensity in 3D on 2D mode: (a) test pattern used for the elemental images and (b) a camera captured image when 2D images are projected with the maximum intensity.

Fig. 12
Fig. 12

The compensated 2D images and the elemental images for 3D on 2D mode experiment.

Fig. 13
Fig. 13

Experimental results for 3D on 2D mode operation: (a) front side (Media 1), and (b) rear side (Media 2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 g + 1 d = 1 f ,
r h = r p f d p f ,

Metrics