Abstract

A biosensor capable of highly sensitive detection of trace chromium (VI) with a simple hollow-core metal-cladding waveguide (HCMW) structure is theoretically modeled and experimentally demonstrated. Owing to the high sensitivity of the excited ultrahigh-order modes in the waveguide, a tiny variation of the extinction coefficients in the waveguide guiding layer where the chromate ions reacts with the diphenylcarbazide (DPC) can lead to a significant change of light intensity in the reflection spectrum. The experimental results indicate that using the proposed method, the chromium (VI) sensitivity detection limit can be as low as 1.2 nM, which represents a 16-fold improvement compared to the surface plasmon field-enhanced resonance light scattering (SP-RLS) method, and a 4-fold improvement compared to the flame atomic absorption spectrometry and fluorimetry spectroscopy, respectively.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Metal-clad waveguide sensor using a left-handed material as a core layer

Hani M. Kullab, Sofyan A. Taya, and Taher M. El-Agez
J. Opt. Soc. Am. B 29(5) 959-964 (2012)

Oscillating wave displacement sensor using the enhanced Goos–Hänchen effect in a symmetrical metal-cladding optical waveguide

Tianyi Yu, Honggen Li, Zhuangqi Cao, Yi Wang, Qishun Shen, and Ying He
Opt. Lett. 33(9) 1001-1003 (2008)

Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption

Shin-Won Kang, Keisuke Sasaki, and Haruyuki Minamitani
Appl. Opt. 32(19) 3544-3549 (1993)

References

  • View by:
  • |
  • |
  • |

  1. V. Gómez and M. P. Callao, “Chromium determination and speciation since 2000,” Trends Analyt. Chem. 25(10), 1006–1015 (2006).
    [Crossref]
  2. J. L. Manzoori and A. Saleemi, “Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier,” J. Anal. At. Spectrom. 9(3), 337–339 (1994).
    [Crossref]
  3. I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
    [Crossref]
  4. R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
    [Crossref]
  5. A. Tunçeli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS,” Talanta 57(6), 1199–1204 (2002).
    [Crossref] [PubMed]
  6. E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
    [Crossref]
  7. N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
    [Crossref] [PubMed]
  8. Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
    [Crossref] [PubMed]
  9. M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
    [PubMed]
  10. Y. Chang and S. Jiang, “Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 16(12), 1434–1438 (2001).
    [Crossref]
  11. D. Huo and H. M. Kingston, “Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry,” Anal. Chem. 72(20), 5047–5054 (2000).
    [Crossref] [PubMed]
  12. L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
    [Crossref] [PubMed]
  13. Zygmunt Marczenko, Spectrophotometric Determination of Elements (John Wiley & Sons Inc, 1976).
  14. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  15. C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
    [Crossref] [PubMed]
  16. R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
    [Crossref]
  17. R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
    [Crossref]
  18. M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20(9), 1718–1727 (2005).
    [Crossref] [PubMed]
  19. Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
    [Crossref] [PubMed]
  20. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
    [Crossref]
  21. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
    [Crossref] [PubMed]
  22. Optical glass data sheets; (SCHOTT North America Inc, 2013). http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_all_us.pdf .
  23. H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
    [Crossref]
  24. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
    [Crossref]
  25. X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
    [Crossref]
  26. W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71(2), 189–191 (1981).
    [Crossref]
  27. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition (Cambridge University Press, 1999)
  28. R. L. David, W. M. “Mickey” Haynes, CRC Handbook of Chemistry and Physics, 90th Edition (CRC Press, 2010).
  29. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989).
    [Crossref]
  30. G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
    [Crossref]
  31. Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
    [Crossref]
  32. EPA method 7196A: Chromium, Hexavalent (Colorimetric); (US Environmental Protection Agency, 1992). http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/7196a.pdf .

2011 (1)

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

2007 (2)

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

2006 (3)

V. Gómez and M. P. Callao, “Chromium determination and speciation since 2000,” Trends Analyt. Chem. 25(10), 1006–1015 (2006).
[Crossref]

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

2005 (3)

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20(9), 1718–1727 (2005).
[Crossref] [PubMed]

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

2004 (3)

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[Crossref] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

2003 (1)

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

2002 (2)

A. Tunçeli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS,” Talanta 57(6), 1199–1204 (2002).
[Crossref] [PubMed]

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[Crossref]

2001 (2)

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Y. Chang and S. Jiang, “Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 16(12), 1434–1438 (2001).
[Crossref]

2000 (1)

D. Huo and H. M. Kingston, “Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry,” Anal. Chem. 72(20), 5047–5054 (2000).
[Crossref] [PubMed]

1998 (1)

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

1996 (2)

R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
[Crossref]

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

1994 (2)

J. L. Manzoori and A. Saleemi, “Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier,” J. Anal. At. Spectrom. 9(3), 337–339 (1994).
[Crossref]

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

1993 (1)

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

1989 (1)

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1981 (1)

Arunachalam, J.

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

Balarama Krishna, M. V.

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

Bermejo-Barrera, M. P.

R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
[Crossref]

Callao, M. P.

V. Gómez and M. P. Callao, “Chromium determination and speciation since 2000,” Trends Analyt. Chem. 25(10), 1006–1015 (2006).
[Crossref]

Cao, Z.

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

Cespón-Romero, R. M.

R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
[Crossref]

Chandrasekaran, K.

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

Chang, Y.

Y. Chang and S. Jiang, “Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 16(12), 1434–1438 (2001).
[Crossref]

Chen, G.

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

Chen, J. M.

Chen, S. J.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[Crossref] [PubMed]

Chen, W. P.

Chen, Y.

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Chien, F. C.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[Crossref] [PubMed]

Ciceri, E.

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

Cronin, J. M.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Cush, R.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Deng, X.

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Dostalek, J.

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Formanovsky, A.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Goddard, N. J.

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20(9), 1718–1727 (2005).
[Crossref] [PubMed]

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Gómez, V.

V. Gómez and M. P. Callao, “Chromium determination and speciation since 2000,” Trends Analyt. Chem. 25(10), 1006–1015 (2006).
[Crossref]

Gu, J.

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

Han, Z.

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Hao, J.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Horváth, R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[Crossref]

Huang, C. J.

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Huang, X.

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

Huo, D.

D. Huo and H. M. Kingston, “Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry,” Anal. Chem. 72(20), 5047–5054 (2000).
[Crossref] [PubMed]

Jiang, S.

Y. Chang and S. Jiang, “Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 16(12), 1434–1438 (2001).
[Crossref]

Jie, N.

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

Karayannis, M. I.

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Karunasagar, D.

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

Kingston, H. M.

D. Huo and H. M. Kingston, “Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry,” Anal. Chem. 72(20), 5047–5054 (2000).
[Crossref] [PubMed]

Knoll, W.

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Kubrakova, I.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Kudinova, T.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Kuz'min, N.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Larsen, N. B.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[Crossref]

Li, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

Li, N.

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lindvold, L. R.

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[Crossref]

Liu, W.

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

Lukosz, W.

Manzoori, J. L.

J. L. Manzoori and A. Saleemi, “Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier,” J. Anal. At. Spectrom. 9(3), 337–339 (1994).
[Crossref]

Maule, C. H.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Mei, L.

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

Mester, Z.

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

Molloy, J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Paleologos, E. K.

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Qi, L.

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Qiu, L.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Rao, S. V.

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

Saleemi, A.

J. L. Manzoori and A. Saleemi, “Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier,” J. Anal. At. Spectrom. 9(3), 337–339 (1994).
[Crossref]

Sessitsch, A.

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Shen, G.

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Shen, Q.

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

Shen, Y.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Stalikas, C. D.

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Stewart, W. J.

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

Sturgeon, R. E.

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

Tiefenthaler, K.

Tong, A.

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

Tsysin, G.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Tunçeli, A.

A. Tunçeli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS,” Talanta 57(6), 1199–1204 (2002).
[Crossref] [PubMed]

Türker, A. R.

A. Tunçeli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS,” Talanta 57(6), 1199–1204 (2002).
[Crossref] [PubMed]

Tzouwara-Karayanni, S. M.

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Xiang, Y.

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

Xiao, P.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

Yang, J.

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

Yang, L.

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

Yebra-Biurrun, M. C.

R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
[Crossref]

Yuan, W.

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

Zhang, Q.

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

Zhou, F.

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Zhu, P.

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Zolotov, Y.

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Zourob, M.

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20(9), 1718–1727 (2005).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

L. Yang, E. Ciceri, Z. Mester, and R. E. Sturgeon, “Application of double-spike isotope dilution for the accurate determination of Cr(III), Cr(VI) and total Cr in yeast,” Anal. Bioanal. Chem. 386(6), 1673–1680 (2006).
[Crossref] [PubMed]

Anal. Chem. (3)

D. Huo and H. M. Kingston, “Correction of species transformations in the analysis of Cr(VI) in solid environmental samples using speciated isotope dilution mass spectrometry,” Anal. Chem. 72(20), 5047–5054 (2000).
[Crossref] [PubMed]

C. J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of e. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Z. Han, L. Qi, G. Shen, W. Liu, and Y. Chen, “Determination of Chromium(VI) by Surface Plasmon Field-Enhanced Resonance Light Scattering,” Anal. Chem. 79(15), 5862–5868 (2007).
[Crossref] [PubMed]

Anal. Chim. Acta (3)

R. M. Cespón-Romero, M. C. Yebra-Biurrun, and M. P. Bermejo-Barrera, “Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system,” Anal. Chim. Acta 327(1), 37–45 (1996).
[Crossref]

E. K. Paleologos, C. D. Stalikas, S. M. Tzouwara-Karayanni, and M. I. Karayannis, “Selective speciation of trace chromium through micelle-mediated preconcentration, coupled with micellar flow injection analysis–spectrofluorimetry,” Anal. Chim. Acta 436(1), 49–57 (2001).
[Crossref]

Y. Xiang, L. Mei, N. Li, and A. Tong, “Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement,” Anal. Chim. Acta 581(1), 132–136 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (1)

I. Kubrakova, T. Kudinova, A. Formanovsky, N. Kuz'min, G. Tsysin, and Y. Zolotov, “Determination of chromium(III) and chromium(VI) in river water by electrothermal atomic absorption spectrometry after sorption preconcentration in a microwave field,” Analyst (Lond.) 119(11), 2477–2480 (1994).
[Crossref]

Appl. Phys. B (1)

R. Horváth, L. R. Lindvold, and N. B. Larsen, “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B 74(4-5), 383–393 (2002).
[Crossref]

Appl. Phys. Lett. (3)

G. Chen, Z. Cao, J. Gu, and Q. Shen, “Oscillating wave sensors based on ultrahigh-order modes in symmetric metal-clad optical waveguides,” Appl. Phys. Lett. 89(8), 081120 (2006).
[Crossref]

H. Lu, Z. Cao, H. Li, and Q. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85(20), 4579–4581 (2004).
[Crossref]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757–2779 (2003).
[Crossref]

Biosens. Bioelectron. (4)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 635–649 (1996).
[Crossref]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[Crossref] [PubMed]

M. Zourob and N. J. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20(9), 1718–1727 (2005).
[Crossref] [PubMed]

R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron. 8(7-8), 347–354 (1993).
[Crossref]

J. Anal. At. Spectrom. (2)

Y. Chang and S. Jiang, “Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 16(12), 1434–1438 (2001).
[Crossref]

J. L. Manzoori and A. Saleemi, “Determination of chromium in serum and lake water by electrothermal atomic absorption spectrometry using vanadium and molybdenum modifier,” J. Anal. At. Spectrom. 9(3), 337–339 (1994).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

X. Deng, Z. Cao, Q. Shen, P. Zhu, F. Zhou, Y. Shen, J. Hao, and L. Qiu, “An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold,” Opt. Commun. 242(4-6), 623–630 (2004).
[Crossref]

Opt. Laser Technol. (1)

Y. Yang, Z. Cao, Q. Shen, J. Hao, L. Qiu, Y. Shen, W. Yuan, and P. Xiao, “Multi-channel light modulation based on the attenuation total re&ection,” Opt. Laser Technol. 37(3), 225–228 (2005).
[Crossref]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Talanta (3)

A. Tunçeli and A. R. Türker, “Speciation of Cr(III) and Cr(VI) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS,” Talanta 57(6), 1199–1204 (2002).
[Crossref] [PubMed]

M. V. Balarama Krishna, K. Chandrasekaran, S. V. Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS,” Talanta 65(1), 135–143 (2005).
[PubMed]

N. Jie, Q. Zhang, J. Yang, and X. Huang, “Determination of chromium in waste-water and cast iron samples by fluorescence quenching of rhodamine 6G,” Talanta 46(1), 215–219 (1998).
[Crossref] [PubMed]

Trends Analyt. Chem. (1)

V. Gómez and M. P. Callao, “Chromium determination and speciation since 2000,” Trends Analyt. Chem. 25(10), 1006–1015 (2006).
[Crossref]

Other (5)

Zygmunt Marczenko, Spectrophotometric Determination of Elements (John Wiley & Sons Inc, 1976).

EPA method 7196A: Chromium, Hexavalent (Colorimetric); (US Environmental Protection Agency, 1992). http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/7196a.pdf .

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edition (Cambridge University Press, 1999)

R. L. David, W. M. “Mickey” Haynes, CRC Handbook of Chemistry and Physics, 90th Edition (CRC Press, 2010).

Optical glass data sheets; (SCHOTT North America Inc, 2013). http://www.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_all_us.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a). HCMW Sensor Chip, thicknesses of each layer from above are 35nm, 0.5mm, 0.5mm, 0.5mm, 200nm.The volume of middle sample room is about 4mm × 10mm × 0.5mm. (b). Experiment configuration of the oscillation field sensor system.
Fig. 2
Fig. 2 Simulation results of the change of R min with the increasing of the distinction coefficient of the analyte in four different resonant configurations ( Δκ0 ). (a) SPR, (b) LRSPR, (c) RSW, (d) HCMW.
Fig. 3
Fig. 3 (a). ATR spectrums of different concentration of Cr (VI). Left curves are the whole ATR spectrums while the curves in middle part are the enlarged ones around R min ; (b). Reflectance at coupled angle of different concentration of Cr (VI) and the concentration response curve (the fitted line).

Tables (2)

Tables Icon

Table 1 Parameters for the four sensor type being simulated.a

Tables Icon

Table 2 The relative standard deviations of solutions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R min 1 4Im( β 0 )Im(Δ β L ) [Im( β 0 )+Im(Δ β L )] 2
Im( β 0 )=Im(Δ β L )
Im(ε)= n K m ln10· k 0 C
R min =(0.007965±0.000814)·C(Cr(VI))+(0.09763±0.00117)

Metrics