Abstract

We present a diode incorporating a large number (12) of GaAs quantum wells that emits light from exciton-polariton states at room temperature. A reversely biased tunnel junction is placed in the cavity region to improve current injection into the device. Electroluminescence studies reveal two polariton branches which are spectrally separated by a Rabi splitting of 6.5 meV. We observe an anticrossing of the two branches when the temperature is lowered below room temperature as well as a Stark shift of both branches in a bias dependent photoluminescence measurement.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
    [CrossRef]
  2. P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
    [CrossRef]
  3. S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
    [CrossRef]
  4. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
    [CrossRef]
  5. A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
    [CrossRef]
  6. T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
    [CrossRef]
  7. A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
    [CrossRef]
  8. C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
    [CrossRef]
  9. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
    [CrossRef]
  10. G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
    [CrossRef]
  11. T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
    [CrossRef]
  12. T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B87,195305 (2013).
    [CrossRef]
  13. J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
    [CrossRef]
  14. I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
    [CrossRef]
  15. L. Esaki, “New phenomenon in narrow germanium pn junctions,” Phys. Rev.109,603 (1958).
    [CrossRef]
  16. T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
    [CrossRef]
  17. T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
    [CrossRef]
  18. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
    [CrossRef]
  19. T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
    [CrossRef]
  20. G. C. DeSalvo, “Ultrathin delta doped GaAs and AlAs tunnel junctions as interdevice ohmic contacts,” J. Appl. Phys.74, 4207–4212 (1993).
    [CrossRef]
  21. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
    [CrossRef]
  22. P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
    [CrossRef]
  23. J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
    [CrossRef]
  24. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
    [CrossRef]
  25. M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
    [CrossRef]
  26. H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
    [CrossRef]
  27. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
    [CrossRef]
  28. S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
    [CrossRef]
  29. S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
    [CrossRef]
  30. T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
    [CrossRef]
  31. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
    [CrossRef]
  32. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
    [CrossRef]

2013 (4)

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B87,195305 (2013).
[CrossRef]

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

2012 (4)

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

2011 (1)

T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
[CrossRef]

2010 (2)

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

2009 (1)

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

2008 (5)

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

2007 (1)

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

2006 (1)

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

2003 (2)

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

2001 (1)

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

1998 (2)

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
[CrossRef]

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

1996 (1)

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

1995 (1)

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

1993 (1)

G. C. DeSalvo, “Ultrathin delta doped GaAs and AlAs tunnel junctions as interdevice ohmic contacts,” J. Appl. Phys.74, 4207–4212 (1993).
[CrossRef]

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

1982 (1)

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

1967 (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

1958 (1)

L. Esaki, “New phenomenon in narrow germanium pn junctions,” Phys. Rev.109,603 (1958).
[CrossRef]

Abram, R. A.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Afshar, A. A.

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

Afshar, A. M.

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Amthor, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Aßmann, M.

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Baas, A.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Bajoni, D.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Bayer, M.

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Bhowmick, S.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Bloch, J.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

Bongiovanni, G.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Bouchoule, S.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Brantut., J.-P.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Butté, R.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

Byrnes, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Carlin, J.-F.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Christmann, G.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

Ciuti, C.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Cobet, M.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Das, A.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Dasbach, G.

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

David, A.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Deligeorgis, G.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

DeSalvo, G. C.

G. C. DeSalvo, “Ultrathin delta doped GaAs and AlAs tunnel junctions as interdevice ohmic contacts,” J. Appl. Phys.74, 4207–4212 (1993).
[CrossRef]

Deveaud, B.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Drummond, T. J.

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Ebeling, K. J.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

El Daïf, O.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Eldridge, P. S.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

Esaki, L.

L. Esaki, “New phenomenon in narrow germanium pn junctions,” Phys. Rev.109,603 (1958).
[CrossRef]

Espinosa-Ortega, T.

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B87,195305 (2013).
[CrossRef]

Feltin, E.

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

Fischer, J.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Fischer, R.

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Fisher, T. A.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
[CrossRef]

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Forchel, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

Fraser, M. D.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Freixanet, T.

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

Fujisawa, T.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Gao, T.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

Gardner, N. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Glauser, M.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Golling, M.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Grandjean, N.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

Grundmann, M. J.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Guillet, T.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Hatzopoulos, Z.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Heo, J.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Hill, G.

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Höfling, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

Idrissi Kaitouni, R.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Iorsh, I.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Jäger, R.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Kaeding, J. F.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Kaliteevski, M. A.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Kamp, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Kavokin, A. V.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Khalifa, A. A.

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

Kim, N. Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Knödl, T.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Konstantinidis, G.

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

Krames, M. R.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Kreilkamp, L. E.

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Krizhanovskii, D. N.

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

Kulakovskii, V. D.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

Kumada, N.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Kundermann, S.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Lai, C. W.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Larionov, A. V.

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

Lemaître, A.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Lermer, M.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Levrat, J.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Liew, T. C. H.

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B87,195305 (2013).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
[CrossRef]

Love, A. P. D.

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

Lyons, W. G.

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Malpuech, G.

T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
[CrossRef]

Marzin, J. Y.

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

Michalzik, R.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Mihopoulos, T. G.

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Morier-Genoud, F.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Morkoc, H.

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Mura, S.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Na, N.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

Pate, M. A.

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Pelekanos, N. T.

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[CrossRef]

Planel, R.

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

Rahimi-Iman, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Recher, P.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Reitzenstein, S.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Roberts, J. S.

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Roberts., J. S.

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

Rossbach, G.

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

Roumpos, G.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Saba, M.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Savenko, I. G.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Savvidis, P. G.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[CrossRef]

Schneider, C.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

Schwab, M.

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

Semenova, E.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Senellart, P.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Shelykh, I. A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
[CrossRef]

Si Dang, Le

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Skolnick, M. S.

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
[CrossRef]

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Staehli, J. L.

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

Stavrinidis, G.

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

Steehli, J. L.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

Straub, A.

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Tempel, J.-S.

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Thierry-Mieg, V.

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

Thorne, R. E.

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Tsintzos, S. I.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[CrossRef]

Tsotsis, P.

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

Utsunomiya, S.

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

Veit, F.

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Wertz, E.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

Whittaker, D. M.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
[CrossRef]

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Wolf, A.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

Worschech, L.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

Xiao, B.

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Yamamoto, Y.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

Yamomoto, Y.

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

Zhang, H.

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

Appl. Phys. Lett. (6)

A. A. Khalifa, A. P. D. Love, D. N. Krizhanovskii, M. S. Skolnick, and J. S. Roberts, “Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities,” Appl. Phys. Lett.92,061107 (2008).
[CrossRef]

O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut., R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, and B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett.88,061105 (2006).
[CrossRef]

J. Bloch, T. Freixanet, J. Y. Marzin, V. Thierry-Mieg, and R. Planel, “Giant Rabi splitting in a microcavity containing distributed quantum wells,” Appl. Phys. Lett.73, 1694–1696 (1998).
[CrossRef]

A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett.92,053502 (2008).
[CrossRef]

G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett.93,051102 (2008).
[CrossRef]

S. I. Tsintzos, P. G. Savvidis, G. Deligeorgis, Z. Hatzopoulos, and N. T. Pelekanos, “Room temperature GaAs exciton-polariton light emitting diode,” Appl. Phys. Lett.94,071109 (2009).
[CrossRef]

J. Appl. Phys. (1)

G. C. DeSalvo, “Ultrathin delta doped GaAs and AlAs tunnel junctions as interdevice ohmic contacts,” J. Appl. Phys.74, 4207–4212 (1993).
[CrossRef]

J. Vac. Sci. Technol. (1)

T. J. Drummond, W. G. Lyons, R. Fischer, R. E. Thorne, and H. Morkoc, “Si incorporation in Alx Ga1−x As grown by molecular beam epitaxy,” J. Vac. Sci. Technol.21,957 (1982).
[CrossRef]

Nature (4)

M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, Le Si Dang, S. Kundermann, S. Mura, G. Bongiovanni, J. L. Steehli, and B. Deveaud, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature414, 731–735 (2001).
[CrossRef]

C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton-polariton condensate array,” Nature450, 529–532 (2007).
[CrossRef]

C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamomoto, and S. Höfling, “An electrically pumped polariton laser,” Nature497, 348–352 (2013).
[CrossRef]

S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature453, 372–375 (2008).
[CrossRef]

New J. Phys. (2)

P. Tsotsis, P. S. Eldridge, T. Gao, S. I. Tsintzos, Z. Hatzopoulos, and P. G. Savvidis, “Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity,” New J. Phys.14,023060 (2012).
[CrossRef]

J.-S. Tempel, F. Veit, M. Aßmann, L. E. Kreilkamp, S. Höfling, M. Kamp, A. Forchel, and M. Bayer, “Temperature dependence of pulsed polariton lasing in a GaAs microcavity,” New J. Phys.14,083013 (2012).
[CrossRef]

Phys. E Low-dimensional Syst. Nanostructures (1)

T. C. H. Liew, I. A. Shelykh, and G. Malpuech, “Polaritonic devices,” Phys. E Low-dimensional Syst. Nanostructures43, 1543–1568 (2011).
[CrossRef]

Phys. Rev. (1)

L. Esaki, “New phenomenon in narrow germanium pn junctions,” Phys. Rev.109,603 (1958).
[CrossRef]

Phys. Rev. B (8)

I. Iorsh, M. Glauser, G. Rossbach, J. Levrat, M. Cobet, R. Butté, N. Grandjean, M. A. Kaliteevski, R. A. Abram, and A. V. Kavokin, “Generic picture of the emission properties of III-nitride polariton laser diodes: Steady state and current modulation response,” Phys. Rev. B86,125308 (2012).
[CrossRef]

T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis, “Polariton condensate transistor switch,” Phys. Rev. B85,235102 (2012).
[CrossRef]

T. Espinosa-Ortega and T. C. H. Liew, “Complete architecture of integrated photonic circuits based on and and not logic gates of exciton polaritons in semiconductor microcavities,” Phys. Rev. B87,195305 (2013).
[CrossRef]

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, and J. Bloch, “Polariton light-emitting diode in a GaAs-based microcavity,” Phys. Rev. B77,113303 (2008).
[CrossRef]

T. A. Fisher, A. A. Afshar, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts., “Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B53, R10469 (1996).
[CrossRef]

T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B51, 2600–2603 (1995).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B32,1043 (1985).
[CrossRef]

H. Zhang, N. Y. Kim, Y. Yamamoto, and N. Na, “Very strong coupling in GaAs-based optical microcavities,” Phys. Rev. B87,115303 (2013).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, “Polarized Nonequilibrium Bose-Einstein Condensates of Spinor Exciton Polaritons in a Magnetic Field,” Phys. Rev. Lett.105,256401 (2010).
[CrossRef]

P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phys. Rev. Lett.110,206403 (2013).
[CrossRef]

Physica (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34, 149–154 (1967).
[CrossRef]

Rev. Mod. Phys. (1)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Sel. Top. in Quantum Electron. (1)

T. Knödl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, “Multistage bipolar cascade vertical-cavity surface-emitting lasers: Theory and experiment,” Sel. Top. in Quantum Electron.9, 1406–1414 (2003).
[CrossRef]

Semicond. Sci. Technol. (2)

G. Dasbach, M. Bayer, M. Schwab, and A. Forchel, “Spatial photon trapping: tailoring the optical properties of semiconductor microcavities,” Semicond. Sci. Technol.18,S339 (2003).
[CrossRef]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semicond. Sci. Technol.13, 645–669 (1998).
[CrossRef]

Other (1)

S. I. Tsintzos, N. T. Pelekanos, and P. G. Savvidis, ”Electrically Driven Polariton Light Emitting Devices,” in Exciton Polaritons in Microcavities, V. Timofeev and D. Sanvitto, eds. (Springer, Berlin, Heidelberg2012) pp. 377–395.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Calculated band structure (left axis) and nominal aluminum concentration of each layer (right axis) of the studied sample without external bias in the region of the cavity. (b) Refractive index (black) and nominal concentration of silicon (red) and beryllium (green) dopants of the studied sample. The square of the calculated amplitude of the light field is plotted in blue in arbitrary units.

Fig. 2
Fig. 2

(a) Normalized momentum resolved EL spectrum at low injection current (5 μA). Dashed lines are the fitted dispersions of the exciton (red), cavity photon (green) and the two polariton branches (white). (b) Normalized momentum resolved EL spectrum at high injection current (3.315 mA). Dashed lines are the fitted dispersions of (a) at low injection current to illustrate the redshift of about 0.5 nm (1 meV) due to device heating. (c) EL spectra at k|| = 0 for injection currents between 2 μA and 3.3 mA. (d) Area of the peaks fitted to the spectra of (c) versus injection current for both polariton branches.

Fig. 3
Fig. 3

EL spectra for different temperatures at k|| = 0 (left axis). The spectra are normalized to 1 and shifted vertically for clarity. Open symbols are fitted positions of the lower (red circles) and upper polariton (black squares) versus temperature (right axis).

Fig. 4
Fig. 4

(a) Room temperature PL spectra at varying bias at k|| = 0. Dashed lines are guides to the eye. The spectra are normalized to 1 and shifted vertically for clarity. (b) Fitted peak energies of the PL spectra versus applied bias.

Metrics