Abstract

Including free-form optical components in imaging systems provides numerous opportunities for enhanced performance and compact, lightweight packaging. This applies especially to the use of free-form optics in off-axis imaging applications. In case of on-axis imaging, rotationally symmetric lenses are typically used, as they greatly simplify the design and manufacturing process. However, for imaging applications with high aspect ratio, free-form optics can help to provide solutions with clearly better overall imaging performance. For such cases, the ray tracing simulations in this work demonstrate superior imaging performance of basic free-form lenses in comparison to conventional rotationally symmetric lenses, each consisting of two surfaces.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Rolland and K. Thompson, “Freeform optics: Evolution? no, revolution!” SPIE Newsroom (19July2012).
    [CrossRef]
  2. W. T. Plummer, “Unusual optics of the Polaroid SX-70 land camera,” Appl. Opt.21, 196–208 (1982).
    [CrossRef] [PubMed]
  3. W. T. Plummer, J. G. Baker, and J. Van Tassell, “Photographic optical systems with nonrotational aspheric surfaces,” Appl. Opt.38, 3572–3592 (1999).
    [CrossRef]
  4. O. Cakmakci and J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett.32, 1363–1365 (2007).
    [CrossRef] [PubMed]
  5. O. Cakmakci, B. Moore, H. Foroosh, and J. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16, 1583–1589 (2008).
    [CrossRef] [PubMed]
  6. T. Nakano and Y. Tamagawa, “Configuration of an off-axis three-mirror system focused on compactness and brightness,” Appl. Opt.44, 776–783 (2005).
    [CrossRef] [PubMed]
  7. J. M. Rodgers, “Catoptric optical system including concave and convex reflectors,” (1994). US Patent 5,309, 276.
  8. K. Fuerschbach, J. Rolland, and K. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19, 21919–21928 (2011).
    [CrossRef] [PubMed]
  9. R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).
  10. K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
    [CrossRef] [PubMed]
  11. T. Schmid, J. P. Rolland, A. Rakich, and K. P. Thompson, “Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT),” Opt. Express18, 17433–17447 (2010).
    [CrossRef] [PubMed]
  12. P. Benítez and J. C. Miñano, “Ultrahigh-numerical-aperture imaging concentrator,” J. Opt. Soc. Am. A14, 1988–1997 (1997).
    [CrossRef]
  13. J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
    [CrossRef]
  14. J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).
  15. W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).
  16. W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
    [CrossRef] [PubMed]
  17. F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,” Opt. Express20, 5576–5585 (2012).
    [CrossRef] [PubMed]
  18. F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces,” Opt. Express20, 10839–10846 (2012).
    [CrossRef] [PubMed]
  19. CODE V Reference Manual (Synopsis, 2011), chap. 18: Automatic Design in CODE V, pp. 18.1–18.50.
  20. O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).
  21. J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

2012 (4)

2011 (2)

K. Fuerschbach, J. Rolland, and K. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19, 21919–21928 (2011).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

2010 (2)

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

T. Schmid, J. P. Rolland, A. Rakich, and K. P. Thompson, “Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT),” Opt. Express18, 17433–17447 (2010).
[CrossRef] [PubMed]

2009 (2)

J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
[CrossRef]

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2005 (1)

1999 (1)

1997 (1)

1982 (1)

1980 (1)

R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).

Baker, J. G.

Benítez, P.

J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,” Opt. Express20, 5576–5585 (2012).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
[CrossRef] [PubMed]

F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces,” Opt. Express20, 10839–10846 (2012).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
[CrossRef]

P. Benítez and J. C. Miñano, “Ultrahigh-numerical-aperture imaging concentrator,” J. Opt. Soc. Am. A14, 1988–1997 (1997).
[CrossRef]

Biot, G.

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

Cakmakci, O.

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).

O. Cakmakci, B. Moore, H. Foroosh, and J. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16, 1583–1589 (2008).
[CrossRef] [PubMed]

O. Cakmakci and J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett.32, 1363–1365 (2007).
[CrossRef] [PubMed]

de la Fuente, M.

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
[CrossRef] [PubMed]

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

Duerr, F.

Foroosh, H.

Fuerschbach, K.

Infante, J. M.

Infante Herrero, J. M.

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

Lin, W.

J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
[CrossRef]

Liu, J.

J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

Meuret, Y.

Miñano, J. C.

F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,” Opt. Express20, 5576–5585 (2012).
[CrossRef] [PubMed]

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, G. Biot, and M. de la Fuente, “SMS-based optimization strategy for ultra-compact SWIR telephoto lens design,” Opt. Express20, 9726–9735 (2012).
[CrossRef] [PubMed]

F. Duerr, P. Benítez, J. C. Miñano, Y. Meuret, and H. Thienpont, “Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces,” Opt. Express20, 10839–10846 (2012).
[CrossRef] [PubMed]

J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
[CrossRef]

P. Benítez and J. C. Miñano, “Ultrahigh-numerical-aperture imaging concentrator,” J. Opt. Soc. Am. A14, 1988–1997 (1997).
[CrossRef]

Moore, B.

Muñoz, F.

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

J. C. Miñano, P. Benítez, W. Lin, J. M. Infante, F. Muñoz, and A. Santamaría, “An application of the SMS method for imaging designs,” Opt. Express17, 24036–24044 (2009).
[CrossRef]

Nakano, T.

Plummer, W. T.

Rakich, A.

Rodgers, J. M.

J. M. Rodgers, “Catoptric optical system including concave and convex reflectors,” (1994). US Patent 5,309, 276.

Rogers, J.

O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).

Rolland, J.

K. Fuerschbach, J. Rolland, and K. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19, 21919–21928 (2011).
[CrossRef] [PubMed]

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).

O. Cakmakci, B. Moore, H. Foroosh, and J. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16, 1583–1589 (2008).
[CrossRef] [PubMed]

O. Cakmakci and J. Rolland, “Design and fabrication of a dual-element off-axis near-eye optical magnifier,” Opt. Lett.32, 1363–1365 (2007).
[CrossRef] [PubMed]

J. Rolland and K. Thompson, “Freeform optics: Evolution? no, revolution!” SPIE Newsroom (19July2012).
[CrossRef]

Rolland, J. P.

Santamaría, A.

Schmid, T.

T. Schmid, J. P. Rolland, A. Rakich, and K. P. Thompson, “Separation of the effects of astigmatic figure error from misalignments using Nodal Aberration Theory (NAT),” Opt. Express18, 17433–17447 (2010).
[CrossRef] [PubMed]

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

Shack, R.

R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).

Tamagawa, Y.

Thienpont, H.

Thompson, K.

K. Fuerschbach, J. Rolland, and K. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19, 21919–21928 (2011).
[CrossRef] [PubMed]

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).

R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).

J. Rolland and K. Thompson, “Freeform optics: Evolution? no, revolution!” SPIE Newsroom (19July2012).
[CrossRef]

Thompson, K. P.

Van Tassell, J.

Vilaplana, J.

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

Wang, L.

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

JOSA A (1)

K. Thompson, T. Schmid, O. Cakmakci, and J. Rolland, “Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry,” JOSA A26, 1503–1517 (2009).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (5)

J. M. Infante Herrero, F. Muñoz, P. Benítez, J. C. Miñano, L. Wang, J. Vilaplana, G. Biot, and M. de La Fuente, “Novel fast catadioptric objective with wide field of view,” Proc. SPIE7787, 778704 (2010).

W. Lin, P. Benítez, J. C. Miñano, J. M. Infante, and G. Biot, “Advances in the SMS design method for imaging optics,” Proc. SPIE8167, 81670M (2011).

O. Cakmakci, J. Rolland, K. Thompson, and J. Rogers, “Design efficiency of 3188 optical designs,” Proc. SPIE7060, 70600S (2008).

J. Liu, J. C. Miñano, P. Benítez, and W. Lin, “Single optical surface imaging designs with unconstrained object to image mapping,” Proc. SPIE8550, 855011 (2012).

R. Shack and K. Thompson, “Influence of alignment errors of a telescope system on its aberration field,” Proc. SPIE251, 146–153 (1980).

Other (3)

J. Rolland and K. Thompson, “Freeform optics: Evolution? no, revolution!” SPIE Newsroom (19July2012).
[CrossRef]

J. M. Rodgers, “Catoptric optical system including concave and convex reflectors,” (1994). US Patent 5,309, 276.

CODE V Reference Manual (Synopsis, 2011), chap. 18: Automatic Design in CODE V, pp. 18.1–18.50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Left) Layout of U.S. Patent 5,309,276 consisting of three off-axis sections of rotationally symmetric mirrors and a fourth fold mirror [7]. (Right) A new free-form optical design based on tilted ϕ-polynomial surfaces (images source: Fuerschbach et al. [8]).

Fig. 2
Fig. 2

(Left) The rotationally symmetric field for which the system is designed, is oversized for image sensors with rectangular aspect ratio. (Right) Any rotationally symmetric optical system for a rectangular field could be improved by making the surfaces free-form.

Fig. 3
Fig. 3

(Left) A rotationally symmetric field is clearly mismatching a rectangular receiver with high aspect ratio. (Right) The free-form lens seems as a very promising solution to better suit the desired aspect ratio than a classic rotationally symmetric lens.

Fig. 4
Fig. 4

3D viewing of ray tracing for the circular rotationally symmetric lens on the left, and the rectangular free-form lens on the right, after conversion to Code V surfaces.

Fig. 5
Fig. 5

Comparison of the in-plane cross-section profiles of the two lenses: the profiles of the aspherical lens and the free-form lens in x-z-plane coincide, whereas the (dashed) profiles of the free-form lens in y-z-plane clearly deviate from the aspherical profiles.

Fig. 6
Fig. 6

Spot diagrams for the circular rotationally symmetric lens (left), and for the rectangular free-form lens (right). As expected from the design characteristics, the RMS spot diameters are minimal at the design angles ±11° and 0° for the 3D free-form design, and at 0° for the rotationally symmetric lens, highlighted in red.

Fig. 7
Fig. 7

The comparison of the RMS spot diameter contour plots for the circular rotationally symmetric lens (top) and for the rectangular free-form lens (bottom) illustrate the very different allocation of the designed fields.

Fig. 8
Fig. 8

RMS spot diameter contour plots for the circular rotationally symmetric lens (top) and the rectangular free-form lens (bottom) after optimization for the indicated 10:1 FOV. The figures clearly show the superior imaging performance of the free-form lens in terms of RMS spot diameter, compared with the rotationally symmetric lens.

Fig. 9
Fig. 9

Surface contour plots of the first (left) and second (right) lens surface where the optimized rotationally symmetric surfaces are subtracted from the free-form lens surfaces.

Metrics