Abstract

We propose a system that reduces laser display speckles by vibrating the light pipe. A small displacement of the light pipe appears to allow the total reflection of the laser, thereby resulting in a homogenized speckle field that changes with time. In this case, the speckle interference generated by the pattern projected by the laser through the light pipe destroys the spatial homogenization of the laser beams when the light pipe is vibrated. Moreover, when the light pipe begins the sequential vibration, the phases and paths of the beams are changed after the beams traverse the light pipe. Consequently, temporal speckle wavefront superposition can homogenize the luminous intensity distribution of the speckle pattern. This process reduces the speckle contrast to less than 4% while maintaining a luminous intensity of greater than 70%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
    [CrossRef]
  2. J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A11(9), 2345–2349 (1994).
    [CrossRef] [PubMed]
  3. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt.37(10), 1770–1775 (1998).
    [CrossRef] [PubMed]
  4. L. Wang, T. Tschudi, T. Halldorsson, and P. Petursson, “Method and device for eliminating image speckles in scanning laser image projection,” U.S. Patent 6367935, 2002.
  5. S. Lowenthal and H. Aresenault, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am.61(7), 847–851 (1971).
    [CrossRef]
  6. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am.66(11), 1290–1294 (1976).
    [CrossRef]
  7. K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
    [CrossRef]
  8. S. Roelandt, Y. Meuret, G. Craggs, G. Verschaffelt, P. Janssens, and H. Thienpont, “Standardized speckle measurement method matched to human speckle perception in laser projection systems,” Opt. Express20(8), 8770–8783 (2012).
    [CrossRef] [PubMed]
  9. M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng.49(2), 024202 (2010).
    [CrossRef]
  10. H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express15(12), 7415–7422 (2007).
    [CrossRef] [PubMed]
  11. C. Joenathan and B. M. Khorana, “Contrast of the vibration fringes in time-averaged electronic speckle-pattern interferometry: effect of speckle averaging,” Appl. Opt.31(11), 1863–1870 (1992).
    [CrossRef] [PubMed]
  12. M. Francon, Laser Speckle and Applications in Optics (Academic, 1979).
  13. F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt.48(19), 3742–3749 (2009).
    [CrossRef] [PubMed]
  14. A. J. Weierholt, E. G. Rawson, and J. W. Goodman, “Frequency-correlation properties of optical waveguide intensity patterns,” J. Opt. Soc. Am. A1(2), 201–205 (1984).
    [CrossRef]
  15. C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).
  16. F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis (Karlsruhe Institute of Technology, 2009).
  17. P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).
  18. Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
    [CrossRef]
  19. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).
  20. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt.52(6), 1168–1172 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (1)

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

2010 (2)

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng.49(2), 024202 (2010).
[CrossRef]

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

2009 (1)

2007 (2)

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

H. Funamizu and J. Uozumi, “Generation of fractal speckles by means of a spatial light modulator,” Opt. Express15(12), 7415–7422 (2007).
[CrossRef] [PubMed]

2006 (1)

C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).

2004 (1)

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

1998 (1)

1994 (1)

1992 (1)

1984 (1)

1976 (1)

1971 (1)

Allen, G.

Aresenault, H.

Artigas, J. M.

Ashok, P. C.

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Bastian, G.

Bengtsson, J.

C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).

Buades, M. J.

Cao, H.

Craggs, G.

Dufresne, E. R.

Felipe, A.

Funamizu, H.

Furue, H.

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

Goodman, J. W.

Halldórsson, T.

Janssens, P.

Joenathan, C.

Kas, V.

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Kasazumi, K.

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

Kawakami, T.

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Khorana, B. M.

Kitaoka, Y.

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

Koizumi, Y.

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

Kuratomi, Y.

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Lemmer, U.

Lowenthal, S.

Lu, Z.

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng.49(2), 024202 (2010).
[CrossRef]

Meuret, Y.

Mizuuchi, K.

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

Nafarrate, A. B.

Nair, U.

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Namboothiri, V. N. N.

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Nampoori, V. P. N.

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Norton, R. E.

Ono, M.

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

Pétursson, P. R.

Rawson, E. G.

Redding, B.

Riechert, F.

Roelandt, S.

Rydberg, C.

C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).

Sandstrom, T.

C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).

Sato, H.

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Sekiya, K.

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Shirao, M.

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

Sun, M.

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng.49(2), 024202 (2010).
[CrossRef]

Terashima, A.

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

Thienpont, H.

Tschudi, T.

Uchida, T.

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Uozumi, J.

Verschaffelt, G.

Wang, L.

Weierholt, A. J.

Yamamoto, K.

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

Appl. Opt. (4)

J. Microlithogr. Microfabr. Microsyst. (1)

C. Rydberg, J. Bengtsson, and T. Sandstrom, “Dynamic laser speckle as a detrimental phenomenon in optical projection lithography,” J. Microlithogr. Microfabr. Microsyst.5(3), 033004 (2006).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Soc. Inf. Disp. (1)

Y. Kuratomi, K. Sekiya, H. Sato, T. Kawakami, and T. Uchida, “Analysis of speckle-reduction performance in a laser rear-projection display using a small moving diffuser,” J. Soc. Inf. Disp.18(12), 1119–1126 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Furue, A. Terashima, M. Shirao, Y. Koizumi, and M. Ono, “Control of laser speckle noise using liquid crystals,” Jpn. J. Appl. Phys.50(9), 09NE14 (2011).
[CrossRef]

K. Kasazumi, Y. Kitaoka, K. Mizuuchi, and K. Yamamoto, “A practical laser projector with new illumination optics for reduction of speckle noise,” Jpn. J. Appl. Phys.43(8B), 5904–5906 (2004).
[CrossRef]

Opt. Eng. (1)

M. Sun and Z. Lu, “Speckle suppression with a rotating light pipe,” Opt. Eng.49(2), 024202 (2010).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

P. C. Ashok, U. Nair, V. Kas, V. N. N. Namboothiri, and V. P. N. Nampoori, “Speckle metrology based study on the effect of chattering on machined surfaces,” Proc. SPIE6671, 6671V (2007).

Other (4)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

L. Wang, T. Tschudi, T. Halldorsson, and P. Petursson, “Method and device for eliminating image speckles in scanning laser image projection,” U.S. Patent 6367935, 2002.

M. Francon, Laser Speckle and Applications in Optics (Academic, 1979).

F. Riechert, “Speckle reduction in projection systems,” Ph.D. thesis (Karlsruhe Institute of Technology, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Speckle field caused by diffusion and total reflection in the light pipe.

Fig. 2
Fig. 2

Speckle field superposition caused by one-time total reflection.

Fig. 3
Fig. 3

(a) Speckle field. (b) Luminous intensity distribution.

Fig. 4
Fig. 4

The shift-vibrated effect of a vibrated light pipe.

Fig. 5
Fig. 5

The shift effect of the waveform.

Fig. 6
Fig. 6

Schematic diagram of speckle suppression by a vibrating light pipe.

Fig. 7
Fig. 7

Speckle patterns from the DPSS AMGA-010 laser: (a) 20X without vibration, (b) 20X with maximum vibrated frequency 180 Hz, (c) 40X without vibration, (d) 40X with maximum vibrated frequency 180 Hz.

Fig. 8
Fig. 8

Speckle contrast and vibration frequency data.

Fig. 9
Fig. 9

(a) Vibrating light pipe with frequency 0 Hz. (b) Vibrating light pipe with frequency 180 Hz.

Tables (3)

Tables Icon

Table 1 Experimental Parameters of the Objective Lens

Tables Icon

Table 2 Loss of Light Intensity of the Light Pipe

Tables Icon

Table 3 Experimental Results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

90 ° sin 1 [ 1 n sin ( θ 2 ) ] > θ c
C= σ s I
σ s 2 (T)= 1 T 0 T C τ (τ)dτ
C= { τ c 2T [ 1exp( 2T τ c ) ] } 1 2 τ c = | μ A ( τ ) | 2 dτ
N .A .= n sin θ max
N=( L R×tan θ max )1
C= ( M ) 1 2

Metrics