Abstract

The dynamical properties of an InP photonic crystal nanocavity are experimentally investigated using pump-probe techniques and compared to simulations based on coupled-mode theory. Excellent agreement between experimental results and simulations is obtained when employing a rate equation model containing three time constants, that we interpret as the effects of fast carrier diffusion from an initially localized carrier distribution and the slower effects of surface recombination and bulk recombination. The variation of the time constants with parameters characterizing the nanocavity structure is investigated. The model is further extended to evaluate the importance of the fast and slow carrier relaxation processes in relation to patterning effects in the device, as exemplified by the case of all-optical wavelength conversion.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166 (2009).
    [CrossRef]
  2. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
    [CrossRef]
  3. O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron.17(2), 309–319 (2011).
    [CrossRef]
  4. P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express16(15), 10956–10961 (2008).
    [CrossRef] [PubMed]
  5. M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
    [CrossRef] [PubMed]
  6. L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
    [CrossRef]
  7. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).
  8. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
    [CrossRef]
  9. C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
    [CrossRef]
  10. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
    [CrossRef]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
    [CrossRef] [PubMed]
  12. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008).
    [CrossRef] [PubMed]
  13. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
    [CrossRef]
  14. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011).
    [CrossRef] [PubMed]
  15. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
    [CrossRef] [PubMed]
  16. L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express21(8), 10324–10334 (2013).
    [CrossRef] [PubMed]
  17. C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
    [CrossRef]
  18. Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004).
    [CrossRef] [PubMed]
  19. M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
    [CrossRef]
  20. Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
    [CrossRef]
  21. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
    [CrossRef]
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton University, 2008).
  23. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).
  24. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express14(2), 817–831 (2006).
    [CrossRef] [PubMed]
  25. P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett.102(4), 041107 (2013).
    [CrossRef]
  26. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  27. X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express15(8), 4763–4780 (2007).
    [CrossRef] [PubMed]
  28. P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
    [CrossRef]
  29. P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett.37(10), 1649–1651 (2012).
    [CrossRef] [PubMed]
  30. A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).
  31. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
    [CrossRef] [PubMed]
  32. Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
    [CrossRef]
  33. Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
    [CrossRef] [PubMed]
  34. D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
    [CrossRef]
  35. S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
    [CrossRef]
  36. F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
    [CrossRef]
  37. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
    [CrossRef]
  38. S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, J. P. Reithmaier, S. Trillo, and A. De Rossi, “Two-color switching and wavelength conversion at 10 GHz using a photonic crystal molecule,” in CLEO (2013), CM4D.5.
  39. D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).
  40. J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
    [CrossRef]
  41. M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
    [CrossRef] [PubMed]
  42. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett.32(14), 2046–2048 (2007).
    [CrossRef] [PubMed]
  43. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
    [CrossRef]
  44. K. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, N. Nguyen, C. Pareige, R. Madec, J. C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10 Gb/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in ECOC (2012), We.2.E.5.
  45. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
    [CrossRef] [PubMed]
  46. M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett.38(14), 2466–2468 (2013).
    [CrossRef] [PubMed]

2013 (5)

2012 (3)

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett.37(10), 1649–1651 (2012).
[CrossRef] [PubMed]

2011 (6)

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron.17(2), 309–319 (2011).
[CrossRef]

M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
[CrossRef] [PubMed]

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

2010 (5)

J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
[CrossRef]

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

2009 (6)

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

2008 (4)

2007 (3)

2006 (1)

2005 (2)

2004 (2)

Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
[CrossRef]

2001 (1)

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

2000 (1)

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

1999 (1)

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

1992 (1)

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
[CrossRef] [PubMed]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).

Andrekson, P. A.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Barclay, P. E.

Bayle, F.

Bazin, A.

Beggs, D. M.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008).
[CrossRef] [PubMed]

Bellanca, G.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).

Berg, T. W.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Bolten, J.

Borselli, M.

Boucaud, P.

Cazier, N.

Checoury, X.

Cocorullo, G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

Colman, P.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Combrié, S.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express21(8), 10324–10334 (2013).
[CrossRef] [PubMed]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

de Rossi, A.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express21(8), 10324–10334 (2013).
[CrossRef] [PubMed]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).

Della Corte, F. G.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Ek, S.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Elesin, Y.

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Fan, S. H.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Först, M.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Gonzalez, L. P.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

Gottheil, M.

Guha, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

Halioua, Y.

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Haret, L. D.

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Heuck, M.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett.102(4), 041107 (2013).
[CrossRef]

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett.38(14), 2466–2468 (2013).
[CrossRef] [PubMed]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
[CrossRef] [PubMed]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Hughes, S.

Huppert, D.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
[CrossRef] [PubMed]

Husko, C.

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Iodice, M.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Johnson, T. J.

Kampfrath, T.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

Karle, T. J.

Khan, M. J.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Krauss, T. F.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008).
[CrossRef] [PubMed]

Krishnamurthy, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

Kristensen, P. T.

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett.38(14), 2466–2468 (2013).
[CrossRef] [PubMed]

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett.102(4), 041107 (2013).
[CrossRef]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett.37(10), 1649–1651 (2012).
[CrossRef] [PubMed]

M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
[CrossRef] [PubMed]

Kuipers, K.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

Kuramochi, E.

Kurz, H.

Kuznetsova, N.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Lampin, J. F.

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
[CrossRef]

Lauritano, M.

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

Lehoucq, G.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Lunnemann, P.

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

Malaguti, S.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166 (2009).
[CrossRef]

Mitsugi, S.

Mollot, F.

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
[CrossRef]

Monnier, P.

Moormann, C.

Mørk, J.

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett.38(14), 2466–2468 (2013).
[CrossRef] [PubMed]

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett.102(4), 041107 (2013).
[CrossRef]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
[CrossRef] [PubMed]

J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
[CrossRef]

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Niehusmann, J.

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Nishitani, T.

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

O’Faolain, L.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008).
[CrossRef] [PubMed]

Oda, S.

Oxenløwe, L. K.

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Painter, O.

Palushani, E.

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Peucheret, C.

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Piron, R.

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

Plötzing, T.

Qiu, M.

Raineri, F.

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011).
[CrossRef] [PubMed]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

Raj, R.

Reithmaier, J. P.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Rendina, I.

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

Roelkens, G.

Rosenwaks, Y.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
[CrossRef] [PubMed]

Rossi, A. D.

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

Sagnes, I.

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Shapira, Y.

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
[CrossRef] [PubMed]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
[CrossRef] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).

Srinivasan, K.

Sumikura, H.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

Sunnerud, H.

Tanabe, T.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett.30(19), 2575–2577 (2005).
[CrossRef] [PubMed]

Taniyama, H.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

Tran, Q. V.

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

Trillo, S.

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Van Vlack, C.

Vignaud, D.

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Vukovic, D.

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Wada, O.

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron.17(2), 309–319 (2011).
[CrossRef]

Wahlbrink, T.

Waldow, M.

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

White, T. P.

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett.33(2), 147–149 (2008).
[CrossRef] [PubMed]

Wong, C. W.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express15(8), 4763–4780 (2007).
[CrossRef] [PubMed]

Xu, J.

J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

Yang, J.

Yang, X. D.

Yu, Y.

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Yu, Z. G.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

Yvind, K.

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

Zhang, X. L.

J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
[CrossRef]

Zhang, Z. Y.

Appl. Phys. Lett. (8)

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett.90(3), 031115 (2007).
[CrossRef]

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009).
[CrossRef]

M. Heuck, S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, S. Trillo, P. T. Kristensen, J. Mørk, J. P. Reithmaier, and A. de Rossi, “Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity,” Appl. Phys. Lett.103(18), 181120 (2013).
[CrossRef]

Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, K. Yvind, and J. Mørk, “Experimental demonstration of a four-port photonic crystal cross-waveguide structure,” Appl. Phys. Lett.101(25), 251113 (2012).
[CrossRef]

Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95(6), 061105 (2009).
[CrossRef]

P. T. Kristensen, M. Heuck, and J. Mørk, “Optimal switching using coherent control,” Appl. Phys. Lett.102(4), 041107 (2013).
[CrossRef]

F. G. Della Corte, G. Cocorullo, M. Iodice, and I. Rendina, “Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm,” Appl. Phys. Lett.77(11), 1614–1616 (2000).
[CrossRef]

D. Vignaud, J. F. Lampin, and F. Mollot, “Two-photon absorption in InP substrates in the 1.55 µm range,” Appl. Phys. Lett.85(2), 239–241 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. Xu, X. L. Zhang, and J. Mørk, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron.46(1), 87–94 (2010).
[CrossRef]

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990).

C. Manolatou, M. J. Khan, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron.35(9), 1322–1331 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Wada, “Recent progress in semiconductor-based photonic signal-processing devices,” IEEE J. Sel. Top. Quantum Electron.17(2), 309–319 (2011).
[CrossRef]

IEEE Photonics J. (1)

L. O’Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, “Compact optical switches and modulators based on dispersion engineered photonic crystals,” IEEE Photonics J.2(3), 404–414 (2010).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technol. Lett.13(6), 541–543 (2001).
[CrossRef]

IET Circuits Devices Syst. (1)

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits Devices Syst.5(2), 84–93 (2011).
[CrossRef]

J. Appl. Phys. (1)

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys.109(3), 033102 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (4)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics4, 216–219 (2010).

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

Supplementary information ofK. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4(7), 477–483 (2010).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

New J. Phys. (1)

P. Lunnemann, S. Ek, K. Yvind, R. Piron, and J. Mørk, “Nonlinear carrier dynamics in a quantum dash optical amplifier,” New J. Phys.14(1), 013042 (2012).
[CrossRef]

Opt. Express (12)

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express14(2), 817–831 (2006).
[CrossRef] [PubMed]

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
[CrossRef] [PubMed]

X. D. Yang and C. W. Wong, “Coupled-mode theory for stimulated Raman scattering in high-Q/Vm silicon photonic band gap defect cavity lasers,” Opt. Express15(8), 4763–4780 (2007).
[CrossRef] [PubMed]

P. A. Andrekson, H. Sunnerud, S. Oda, T. Nishitani, and J. Yang, “Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation,” Opt. Express16(15), 10956–10961 (2008).
[CrossRef] [PubMed]

M. Waldow, T. Plötzing, M. Gottheil, M. Först, J. Bolten, T. Wahlbrink, and H. Kurz, “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Opt. Express16(11), 7693–7702 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express12(17), 3988–3995 (2004).
[CrossRef] [PubMed]

Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011).
[CrossRef] [PubMed]

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009).
[CrossRef] [PubMed]

L. D. Haret, X. Checoury, F. Bayle, N. Cazier, P. Boucaud, S. Combrié, and A. de Rossi, “Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities,” Opt. Express21(8), 10324–10334 (2013).
[CrossRef] [PubMed]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express21(10), 11877–11888 (2013).
[CrossRef] [PubMed]

M. Heuck, P. T. Kristensen, and J. Mørk, “Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches,” Opt. Express19(19), 18410–18422 (2011).
[CrossRef] [PubMed]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

A. D. Rossi, M. Lauritano, S. Combrié, Q. V. Tran, and C. Husko, “Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity,” Phys. Rev. A79(4), 043818 (2009).

Phys. Rev. B Condens. Matter (1)

Y. Rosenwaks, Y. Shapira, and D. Huppert, “Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP,” Phys. Rev. B Condens. Matter45(16), 9108–9119 (1992).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166 (2009).
[CrossRef]

Other (4)

S. Combrié, G. Lehoucq, S. Malaguti, G. Bellanca, J. P. Reithmaier, S. Trillo, and A. De Rossi, “Two-color switching and wavelength conversion at 10 GHz using a photonic crystal molecule,” in CLEO (2013), CM4D.5.

D. Vukovic, Y. Yu, M. Heuck, S. Ek, N. Kuznetsova, P. Colman, E. Palushani, J. Xu, K. Yvind, L. K. Oxenløwe, J. Mørk, and C. Peucheret, “Wavelength conversion of a 9.35 Gb/s RZ OOK signal in an InP photonic crystal nanocavity,” IEEE Photonics Technol. Lett. (to be published).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton University, 2008).

K. Lengle, M. Gay, A. Bazin, I. Sagnes, R. Braive, P. Monnier, L. Bramerie, N. Nguyen, C. Pareige, R. Madec, J. C. Simon, R. Raj, and F. Raineri, “Fast all-optical 10 Gb/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity,” in ECOC (2012), We.2.E.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a)-(c) SEM images of the fabricated samples. The scale bar corresponds to 2 μm. (d) Linear transmission spectrum of the H0 cavity structure and fit using a Lorentzian function, giving a loaded Q-factor of 4100. The inset shows the magnetic field intensity of the resonant mode calculated by FDTD simulations.

Fig. 2
Fig. 2

Experimental setup for measuring the dynamics of the PhC switch. MOP: multiport optical processor; EDFA: erbium doped fiber amplifier; VOA: variable optical attenuator; PC: polarization controller; MZM: Mach-Zehnder modulator; AWG: arbitrary waveform generator; DL: delay line; OSA: optical spectrum analyzer.

Fig. 3
Fig. 3

Measured transmitted probe traces versus time delay between probe and pump pulses. The pump is blocked using an optical filter. The signal is normalized to 1 at large negative delay time, i.e. when the probe transmission is unaffected by the pump. The inset shows output spectra of the pump for different pump energies.

Fig. 4
Fig. 4

Calculated effective carrier density versus time for different (a) initial carrier density profiles (S = 0 cm/s, τb = ∞); (b) diffusion coefficients (S = 0 cm/s, τb = ∞); (c) surface recombination velocities (τb = ∞); (d) carrier bulk lifetimes (S = 2 × 104 cm/s). The insets in (a) show the profiles of the carrier density distribution at 0 ps, 5 ps and 50 ps, respectively. The carrier densities are normalized to 1 at t = 0.

Fig. 5
Fig. 5

(a) Effective carrier density versus time calculated using FEM, 3-time constant rate equations and 2-time constant rate equations (S = 0 cm/s, τb = ∞). Dependence of (b) τ1, (c) τ2, (d) τ3, (e) R12 and R23 on the initial carrier density profile (S = 0 cm/s, 1/τb = 0). All the plots correspond to Da = 10 cm2/s.

Fig. 6
Fig. 6

Dependence of the time constants and carrier volume ratios in the rate equation model on the carrier diffusion coefficient. Variation of (a) τ1, (b) τ2, (c) τ3, and (d) R12 and R23. The initial carrier density profile is proportional to ε(x,y)|E(x,y)|4, and S = 0 cm/s, 1/τb = 0.

Fig. 7
Fig. 7

(a) Dependence of the time constants τ1, τ2, τ3 on the surface recombination velocity S (1/τb = 0). (b) Dependence of the time constants τ1, τ2, τ3 on the carrier bulk lifetime τb (S = 2 × 104 cm/s).

Fig. 8
Fig. 8

Left: measured (markers) and simulated (solid lines) probe transmission versus delay between pump and probe pulses for different pump energies and probe detunings. The transmission is normalized to 1 when the probe precedes the pump. The probe pulse width is ~9 ps, and the pump pulse width is 5-6 ps. Right: schematic illustration of the spectral locations of probe (red), pump (blue) and cavity spectrum (grey shaded). (a) The cavity resonance is at 1545.2 nm and the Q-factor is 4100. The pump wavelength is fixed at 1545 nm and two different probe locations are considered. (b) The cavity resonance is at 1541.78 nm and the Q-factor is 1200. The pump wavelength is fixed at 1541.5 nm and two different probe locations are considered.

Fig. 9
Fig. 9

Simulation of wavelength conversion using a PhC switch. The probe signal intensity is shown versus time for a pump signal at repetition rates of (a) 10 GHz and (b) 40 GHz for different pump energies. The pump signal has a center wavelength of 1545 nm. The input probe is a weak continuous wave signal with a detuning of −1.5 nm from the cavity resonance of 1545.2 nm. The other parameters are the same as in Fig. 8(a).

Tables (1)

Tables Icon

Table 1 Parameters Used for CMT Calculations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

a ˙ p (t)=( γ/2j( ω o +Δ ω p (t) ω p ) ) a p (t)+κ s p i (t),
a ˙ s (t)=( γ/2j( ω o +Δ ω s (t) ω s ) ) a s (t)+κ s s i (t),
Δ ω p (t)=( K Kerr | a p (t) | 2 K Car N c (t)+ K th ΔT(t) )j( K TPA | a p (t) | 2 + K FCA N c (t) ),
Δ ω s (t)=( 2 K Kerr | a p (t) | 2 K Car N c (t)+ K th ΔT(t) )j( 2 K TPA | a p (t) | 2 + K FCA N c (t) ).
s s o (t, τ d )=κ a s (t),
T s ( τ d )= pulse | s s o (t, τ d ) | 2 dt pulse | s s o (t,) | 2 dt .
Δ T ˙ (t)= γ th ΔT(t)+ P abs (t)/ C InP .
N ˙ (x,y,t)= D a 2 N(x,y,t)N(x,y,t)/ τ e .
N c (t)= N(x,y,t)ε(x,y) | E(x,y) | 2 dxdy ε(x,y) | E(x,y) | 2 dxdy .
N ˙ c (t)=( N c (t) N 2 (t) )/ τ 1 N c (t)/ τ 3 +G(t),
N ˙ 2 (t)=( N 2 (t) N 3 (t) )/ τ 2 +( N c (t) N 2 (t) )/ τ 1 × R 12 N 2 (t)/ τ 3 ,
N ˙ 3 (t)=( N 2 (t) N 3 (t) )/ τ 2 × R 23 N 3 (t)/ τ 3 ,

Metrics