Abstract

A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [CrossRef]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [CrossRef] [PubMed]
  4. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
    [CrossRef]
  5. H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
    [CrossRef]
  6. A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
    [CrossRef]
  7. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
    [CrossRef] [PubMed]
  8. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [CrossRef] [PubMed]
  9. W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
    [CrossRef]
  10. L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
    [CrossRef]
  11. V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003).
    [CrossRef]
  12. K. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci. 185(1), 29–39 (2001).
    [CrossRef]
  13. J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003).
    [CrossRef] [PubMed]
  14. C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley, 2011).
  15. S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
    [CrossRef]
  16. A. Ostendorf, M. B. Chakif, and Q. Guo, “Laser direct writing of nanocompounds,” in MRS Proceedings, (Cambridge University, 2011), pp. 19–30.
    [CrossRef]
  17. M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
    [CrossRef]
  18. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
    [CrossRef]
  19. A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 40(14), 2581–2590 (2001).
    [CrossRef] [PubMed]
  20. S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
    [CrossRef] [PubMed]
  21. D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
    [CrossRef]
  22. D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
    [CrossRef]
  23. T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
    [CrossRef]
  24. G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
    [CrossRef]
  25. J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995).
    [CrossRef]
  26. C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
    [CrossRef]
  27. K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
    [CrossRef]
  28. A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
    [CrossRef]
  29. Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
    [CrossRef] [PubMed]
  30. E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
    [CrossRef]
  31. G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
    [CrossRef]
  32. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
    [CrossRef] [PubMed]
  33. H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981).
    [CrossRef] [PubMed]
  34. J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
    [CrossRef]
  35. A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
    [CrossRef] [PubMed]

2013 (3)

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

2012 (3)

Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[CrossRef] [PubMed]

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

2011 (1)

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

2009 (3)

K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
[CrossRef]

A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
[CrossRef] [PubMed]

M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

2007 (4)

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[CrossRef] [PubMed]

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

2005 (1)

L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

2004 (1)

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

2003 (3)

V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003).
[CrossRef]

J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

2001 (2)

A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 40(14), 2581–2590 (2001).
[CrossRef] [PubMed]

K. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci. 185(1), 29–39 (2001).
[CrossRef]

2000 (1)

D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[CrossRef]

1999 (1)

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
[CrossRef]

1998 (2)

D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
[CrossRef]

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

1995 (2)

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995).
[CrossRef]

1992 (1)

G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

1988 (1)

A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
[CrossRef]

1981 (1)

H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981).
[CrossRef] [PubMed]

1977 (1)

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Ahopelto, J.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Ansorge, W.

H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981).
[CrossRef] [PubMed]

Barklie, R.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Behl, M.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Bickauskaite, G.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Biscarini, F.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Blau, W.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Byrne, R.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Cavallini, M.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Chen, J.

K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
[CrossRef]

Chiang, C. K.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Chichkov, B.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Chichkov, B. N.

M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[CrossRef] [PubMed]

Chin, E.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Clavijo Cedeño, C.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Coleman, J. N.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Copperwhite, R.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Cronauer, C.

Curran, S.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Dalton, A.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Davey, A.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

De Rossi, D.

D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
[CrossRef]

Diamond, D.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Domann, G.

Doraiswamy, A.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Drechsler, U.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Dürig, U.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Egbert, A.

Emons, M.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Fabretto, M.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Frenner, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Fröhlich, L.

Garoff, H.

H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981).
[CrossRef] [PubMed]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Gittard, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Gorin, A.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Griesser, H. J.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Gu, M.

L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Günes, S.

S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[CrossRef] [PubMed]

Güntherodt, H.-J.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Hansen, T. S.

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

Harbers, R.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Hassager, O.

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

Haverich, A.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

Heeger, A.

A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
[CrossRef]

Heeger, A. J.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Heywang, G.

G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Hoffmann, T.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Holdcroft, S.

J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995).
[CrossRef]

Houbertz, R.

Houlihan, F.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Jabbour, G. E.

D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[CrossRef]

Janata, J.

J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003).
[CrossRef] [PubMed]

Johnson, G.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Jonas, F.

G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Josowicz, M.

J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003).
[CrossRef] [PubMed]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

Kam, A.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Kavanagh, A.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Kawata, S.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Kono, J.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Kreuer, K.

K. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci. 185(1), 29–39 (2001).
[CrossRef]

Krishnan, U. M.

A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
[CrossRef] [PubMed]

Kuray, P.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Larsen, N. B.

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

Löbler, M.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Louis, E. J.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Lowe, J.

J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995).
[CrossRef]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

MacDiarmid, A. G.

A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 40(14), 2581–2590 (2001).
[CrossRef] [PubMed]

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Mahrt, R.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Malhotra, B.

V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003).
[CrossRef]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Masui, K.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Matsuo, S.

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
[CrossRef]

McCarthy, B.

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

McDonagh, C.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Menozzi, C.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Mente, P.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Misawa, H.

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
[CrossRef]

Molino, P. J.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Monteiro Riviere, N.

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Morgner, U.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Mueller, M.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Murgia, M.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Nalamasu, O.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Narayan, R.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Neugebauer, H.

S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[CrossRef] [PubMed]

Ngezahayo, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

Nguyen, L.

L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Obata, K.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Osten, W.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Ostendorf, A.

Oubaha, M.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Ouyang, J.

Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[CrossRef] [PubMed]

Ovsianikov, A.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

Pardo, D. A.

D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[CrossRef]

Patil, A.

A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
[CrossRef]

Paz, V. F.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Pede, D.

D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
[CrossRef]

Peterhänsel, S.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Peyghambarian, N.

D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[CrossRef]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

Popall, M.

Quan, X.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Reinhardt, C.

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

Ruani, G.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Salis, G.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Sariciftci, N. S.

S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[CrossRef] [PubMed]

Saxena, V.

V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003).
[CrossRef]

Schlie, S.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

Schmitz, K.-P.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Schulz, J.

Seekamp, J.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Serbin, J.

Serra, G.

D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
[CrossRef]

Sethuraman, S.

A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
[CrossRef] [PubMed]

Shirakawa, H.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

Shoji, S.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Short, R. D.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Smith, C.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Sone, J.

K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
[CrossRef]

Sotomayor Torres, C.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Sternberg, K.

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Stewart, E. M.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Straub, M.

L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Subramanian, A.

A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
[CrossRef] [PubMed]

Sun, H.-B.

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
[CrossRef]

Sun, K.

Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[CrossRef] [PubMed]

Teh, W.

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Ushiba, S.

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Venugopal, G.

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Wallace, G. G.

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

West, K.

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

Winfield, R.

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

Wudl, F.

A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
[CrossRef]

Xia, Y.

Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[CrossRef] [PubMed]

Yamada, K.

K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
[CrossRef]

Zankovych, S.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Zentel, R.

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[CrossRef] [PubMed]

Acta Biomater. (1)

A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

L. Nguyen, M. Straub, M. Gu, “Acrylate based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[CrossRef]

Adv. Mater. (4)

D. A. Pardo, G. E. Jabbour, N. Peyghambarian, “Application of screen printing in the fabrication of organic light emitting devices,” Adv. Mater. 12(17), 1249–1252 (2000).
[CrossRef]

T. S. Hansen, K. West, O. Hassager, N. B. Larsen, “Direct fast patterning of conductive polymers using agarose stamping,” Adv. Mater. 19(20), 3261–3265 (2007).
[CrossRef]

Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices,” Adv. Mater. 24(18), 2436–2440 (2012).
[CrossRef] [PubMed]

G. Heywang, F. Jonas, “Poly (alkylenedioxythiophene)s - new, very stable conducting polymers,” Adv. Mater. 4(2), 116–118 (1992).
[CrossRef]

Anal. Biochem. (1)

H. Garoff, W. Ansorge, “Improvements of DNA sequencing gels,” Anal. Biochem. 115(2), 450–457 (1981).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers (Nobel lecture),” Angew. Chem. Int. Ed. Engl. 40(14), 2581–2590 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

H.-B. Sun, S. Matsuo, H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786 (1999).
[CrossRef]

Biomater. Sci. (1)

E. M. Stewart, M. Fabretto, M. Mueller, P. J. Molino, H. J. Griesser, R. D. Short, G. G. Wallace, “Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation,” Biomater. Sci. 1(4), 368–378 (2013).
[CrossRef]

Carbon (1)

S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, S. Kawata, “3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography,” Carbon 59, 283–288 (2013).
[CrossRef]

Chem. Mater. (1)

G. Venugopal, X. Quan, G. Johnson, F. Houlihan, E. Chin, O. Nalamasu, “Photoinduced doping and photolithography of methyl-substituted polyaniline,” Chem. Mater. 7(2), 271–276 (1995).
[CrossRef]

Chem. Rev. (2)

S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chem. Rev. 107(4), 1324–1338 (2007).
[CrossRef] [PubMed]

A. Patil, A. Heeger, F. Wudl, “Optical properties of conducting polymers,” Chem. Rev. 88(1), 183–200 (1988).
[CrossRef]

Curr. Appl. Phys. (1)

V. Saxena, B. Malhotra, “Prospects of conducting polymers in molecular electronics,” Curr. Appl. Phys. 3(2-3), 293–305 (2003).
[CrossRef]

Int. J. Appl. Ceram. Technol. (1)

A. Ovsianikov, B. Chichkov, P. Mente, N. Monteiro Riviere, A. Doraiswamy, R. Narayan, “Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007).
[CrossRef]

J. Biomed. Sci. (1)

A. Subramanian, U. M. Krishnan, S. Sethuraman, “Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration,” J. Biomed. Sci. 16(1), 108 (2009).
[CrossRef] [PubMed]

J. Chem. Soc. Chem. Commun. (1)

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH),” J. Chem. Soc. Chem. Commun. 0(16), 578–580 (1977).
[CrossRef]

J. Laser Appl. (1)

V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24(4), 042004 (2012).
[CrossRef]

J. Mater. Chem. (1)

M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R. Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, R. Copperwhite, “Graphene-doped photo-patternable ionogels: tuning of conductivity and mechanical stability of 3D microstructures,” J. Mater. Chem. 22(21), 10552–10559 (2012).
[CrossRef]

J. Membr. Sci. (1)

K. Kreuer, “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci. 185(1), 29–39 (2001).
[CrossRef]

J. Tissue Eng. Regen. Med. (1)

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef] [PubMed]

Macromolecules (1)

J. Lowe, S. Holdcroft, “Synthesis and photolithography of polymers and copolymers based on poly (3-(2-(methacryloyloxy) ethyl) thiophene),” Macromolecules 28(13), 4608–4616 (1995).
[CrossRef]

Mater. Sci. Eng. C (1)

D. Pede, G. Serra, D. De Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography,” Mater. Sci. Eng. C 5(3-4), 289–291 (1998).
[CrossRef]

Microelectron. Eng. (1)

C. Clavijo Cedeño, J. Seekamp, A. Kam, T. Hoffmann, S. Zankovych, C. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, J. Ahopelto, “Nanoimprint lithography for organic electronics,” Microelectron. Eng. 61–62, 25–31 (2002).
[CrossRef]

Nat. Mater. (1)

J. Janata, M. Josowicz, “Conducting polymers in electronic chemical sensors,” Nat. Mater. 2(1), 19–24 (2003).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Farsari, B. N. Chichkov, “Materials processing: two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

K. Yamada, J. Sone, J. Chen, “Three-dimensional photochemical microfabrication of conductive polymers in transparent polymer sheet,” Opt. Rev. 16(2), 208–212 (2009).
[CrossRef]

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[CrossRef]

Phys. Rev. B (1)

J. N. Coleman, S. Curran, A. Dalton, A. Davey, B. McCarthy, W. Blau, R. Barklie, “Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite,” Phys. Rev. B 58(12), R7492–R7495 (1998).
[CrossRef]

Other (2)

A. Ostendorf, M. B. Chakif, and Q. Guo, “Laser direct writing of nanocompounds,” in MRS Proceedings, (Cambridge University, 2011), pp. 19–30.
[CrossRef]

C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The workflow of 3D ICP processing based on 2PP. 1) Direct 2PP fabrication of the microstructures in photoresist/ICP precursor formulation, 2) Removal of uncured photoresist, 3) Oxidative polymerization of the encapsulated ICP precursor, 4) Removal of the remaining soluble byproducts.

Fig. 2
Fig. 2

Schematic representation of microstructures, used to characterize PEG-DA/EDOT electrically by two-probe method (1), SEM images of 2PP fabricated microstructures after development (2) and after oxidative polymerization of ICP precursor (3).

Fig. 3
Fig. 3

Electrical conductivity of PEG-DA/PEDOT measured on microstructures, produced by 2PP. The red line represents a Belehradek power fit.

Fig. 4
Fig. 4

3D micro-scaffolds fabricated using 2PP of PEG-DA and PEG-DA/EDOT with 8 and 17 vol% of EDOT content. Top row: microstructures after development, bottom row: oxidized microstructures.

Tables (1)

Tables Icon

Table 1 2PP Structuring Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ( p p c ) t .

Metrics