Abstract

We experimentally demonstrate a polarization splitting grating coupler that is operational near 1310 nm and 1550 nm in a silicon-on-insulator platform, using the same fiber angle for both wavelength bands. At 1550 nm, the device has an insertion loss of 7.1 dB and a 1.5-dB transmission window of 35 nm. At 1310 nm, the insertion loss and 1.5-dB transmission window are 8.2 dB and 18 nm, respectively. Polarization isolation at 1550 nm is 24 dB. This is the first experimental demonstration of a bi-wavelength polarization-splitting grating coupler.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
    [CrossRef]
  3. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
    [CrossRef]
  4. S. Assefa, H. Pan, S. Shank, W. Green, A. Rylyakov, C. Schow, M. Khater, S. Kamlapurkar, E. Kiewra, T. Topuria, P. Rice, C. W. Baks, and Y. Vlasov, “Monolithically integrated silicon nanophotonics receiver in 90nm CMOS technology node,” in Optical Fiber Communication Conference (Optical Society of America, Anaheim, California, 2013), paper OM2H.4.
    [CrossRef]
  5. http://opsisfoundry.org/
  6. http://www.epixfab.eu/
  7. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  8. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
    [CrossRef]
  9. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
    [CrossRef]
  10. X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).
  11. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
    [CrossRef]
  12. G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,” Opt. Express15(16), 10091–10096 (2007).
    [CrossRef] [PubMed]
  13. Z. Wang, Y. Tang, N. Zhu, L. Wosinski, D. Dai, U. Westergren, and S. He, “Experimental demonstration of an ultracompact polarization beam splitter based on a bidirectional grating coupler,” in Asia Communications and Photonics Conference (Optical Society of America, Beijing, China, 2009), TuD3.
    [CrossRef]
  14. W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
    [CrossRef]
  15. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol.27(5), 612–618 (2009).
    [CrossRef]
  16. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
    [CrossRef]
  17. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett.32(12), 1662–1664 (2007).
    [CrossRef] [PubMed]
  18. Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
    [CrossRef]
  19. D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “SOI 1D and 2D photonic crystal structures for polarization independent fiber-to-chip coupling and duplexing operation,” in The 8th International Photonic and Electromagnetic Crystal Structures Meeting (PECS, Sydney, Australia, 2009), p. 69.
  20. L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
    [CrossRef]
  21. W. Bogaerts, D. Taillaert, P. Dumon, E. Pluk, D. Van Thourhout, and R. Baets, “A compact polarization-independent wavelength duplexer using a polarization-diversity SOI photonic wire circuit,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2007), pp. 1–3.
    [CrossRef]
  22. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  23. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Amsterdam, Netherlands, 2012), paper Tu.4.E.4.
  24. C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
    [CrossRef]
  25. B. E. A. Saleh and M. C. Taeich, Fundamentals of Photonics, 2nd ed. (John Wiley, 2007).
  26. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt.36(36), 9383–9390 (1997).
    [CrossRef] [PubMed]
  27. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  28. R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photonics Technol. Lett.22(6), 389–391 (2010).
    [CrossRef]
  29. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
    [CrossRef] [PubMed]

2013

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

2012

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

2011

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

2010

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photonics Technol. Lett.22(6), 389–391 (2010).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

2009

F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol.27(5), 612–618 (2009).
[CrossRef]

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

2007

2006

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2003

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

1997

Absil, P.

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Baehr-Jones, T.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Baets, R.

Berroth, M.

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

Bogaerts, W.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Bräuer, A.

Chen, L.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Chen, X.

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

Chen, Y.-K.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Cheng, Z.

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Dannberg, P.

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Dobbelaere, P. D.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Doerr, C.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Dumon, P.

Earnshaw, M. P.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Fang, Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Fathpour, S.

Feng, J.

Frandson, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Fung, C. K. Y.

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Halir, R.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photonics Technol. Lett.22(6), 389–391 (2010).
[CrossRef]

Hochberg, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Jalali, B.

Karthe, W.

Kley, E.-B.

Kunze, A.

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lepage, G.

Li, C.

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

Lim, A. E.-J.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Liow, T.-Y.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Lo, G.-Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lo, P. G.-Q.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

Luan, F.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Pluk, E.

Rasras, M. S.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Roelkens, G.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

Schnabel, B.

Selvaraja, S.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Shum, P.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

Silalahi, S. T. H.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Streshinsky, M.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Taillaert, D.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Tsang, H. K.

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

Van Laere, F.

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photonics Technol. Lett.22(6), 389–391 (2010).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express18(17), 18278–18283 (2010).
[CrossRef] [PubMed]

Vogel, W.

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

Waldhäusl, R.

Weiner, J. S.

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

Xiao, Z.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Xu, L.

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Zaoui, W. S.

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

Zhang, J.

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

Zhou, Z.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

IEEE Photonics Technol. Lett.

W. S. Zaoui, A. Kunze, W. Vogel, and M. Berroth, “CMOS-compatible polarization splitting grating couplers with a backside metal mirror,” IEEE Photonics Technol. Lett.25(14), 1395–1397 (2013).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandson, R. M. De La Rue, and R. Baets, “A compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photonics Technol. Lett.15(9), 1249–1251 (2003).
[CrossRef]

Z. Xiao, T.-Y. Liow, J. Zhang, S. T. H. Silalahi, P. Shum, and F. Luan, “Mode control in planar waveguide grating couplers with double surface corrugation,” IEEE Photonics Technol. Lett.24(19), 1722–1725 (2012).
[CrossRef]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized waveguide grating couplers for efficient coupling to optical fibers,” IEEE Photonics Technol. Lett.22(15), 1156–1158 (2010).
[CrossRef]

R. Halir, D. Vermeulen, and G. Roelkens, “Reducing polarization-dependent loss of silicon-on-insulator fiber to chip grating couplers,” IEEE Photonics Technol. Lett.22(6), 389–391 (2010).
[CrossRef]

C. Doerr, L. Chen, M. S. Rasras, Y.-K. Chen, J. S. Weiner, and M. P. Earnshaw, “Diplexer with integrated filters and photodetector in Ge–Si using Γ–M and Γ–X directions in a grating coupler,” IEEE Photonics Technol. Lett.21(22), 1698–1700 (2009).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

Opt. Commun.

L. Xu, X. Chen, C. Li, and H. K. Tsang, “Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers,” Opt. Commun.284(8), 2242–2244 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Proc. SPIE

X. Chen, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Design and applications of silicon waveguide grating couplers,” Proc. SPIE8266, 82660I (2012).

Other

S. Assefa, H. Pan, S. Shank, W. Green, A. Rylyakov, C. Schow, M. Khater, S. Kamlapurkar, E. Kiewra, T. Topuria, P. Rice, C. W. Baks, and Y. Vlasov, “Monolithically integrated silicon nanophotonics receiver in 90nm CMOS technology node,” in Optical Fiber Communication Conference (Optical Society of America, Anaheim, California, 2013), paper OM2H.4.
[CrossRef]

http://opsisfoundry.org/

http://www.epixfab.eu/

W. Bogaerts, D. Taillaert, P. Dumon, E. Pluk, D. Van Thourhout, and R. Baets, “A compact polarization-independent wavelength duplexer using a polarization-diversity SOI photonic wire circuit,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2007), pp. 1–3.
[CrossRef]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs,” in European Conference and Exhibition on Optical Communication (Optical Society of America, Amsterdam, Netherlands, 2012), paper Tu.4.E.4.

Z. Wang, Y. Tang, N. Zhu, L. Wosinski, D. Dai, U. Westergren, and S. He, “Experimental demonstration of an ultracompact polarization beam splitter based on a bidirectional grating coupler,” in Asia Communications and Photonics Conference (Optical Society of America, Beijing, China, 2009), TuD3.
[CrossRef]

D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “SOI 1D and 2D photonic crystal structures for polarization independent fiber-to-chip coupling and duplexing operation,” in The 8th International Photonic and Electromagnetic Crystal Structures Meeting (PECS, Sydney, Australia, 2009), p. 69.

B. E. A. Saleh and M. C. Taeich, Fundamentals of Photonics, 2nd ed. (John Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Phase matching condition for the TM0 mode at 1290 nm and TE0 mode at 1570 nm. The optimum grating pitch and fiber angle is 636 nm and 22.5°, respectively. (b) Schematic illustration of a 1-D device (not to scale).

Fig. 2
Fig. 2

Schematic illustration of the bi-wavelength polarization splitting grating coupler (not to scale). Two sources in different wavelength bands and random polarizations are input into the fiber. Light in the first wavelength band is split according to polarization and coupled into the waveguide TM0 mode. Similarly, light in the second wavelength band is split according to polarization and coupled into the waveguide TE0 mode.

Fig. 3
Fig. 3

3D FDTD simulation of the coupling efficiency of the PSGC performed in Lumerical FDTD. Light in the wavelength band near 1.3 µm couples into the waveguide TM0 mode, while light in the 1.55 µm band couples into the waveguide TE0 mode.

Fig. 4
Fig. 4

Optical micrograph image of the fabricated device. Inset is a rendering of a section of the device layout. The scattering elements consist of rounded diamond-like 60 nm deep trenches in the 220 nm top silicon layer.

Fig. 5
Fig. 5

(a) An array of polarization-maintaining fiber from PLC Connections is mounted above the wafer. (b) The grating coupler is designed for a fiber angle of 23°. (c) The fibers are mounted such that the fast and slow axes are rotated 45° from vertical.

Fig. 6
Fig. 6

(a) Schematic block diagram of test setup. (b) Optical micrograph of test cell to extract device performance with a schematic illustration of the test setup overlaid. Light is launched into the center grating coupler and the output is measured from the left and right couplers.

Fig. 7
Fig. 7

Measured transmission spectrum of the device. Maximum transmission of −8.2 and −7.1 dB is observed for the wavelength bands near 1300 nm and 1550 nm, respectively.

Fig. 8
Fig. 8

Polarization dependent loss near 1550 nm is less than 1.06 dB.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k 0 n eff =k 0 n c sin(θ)cos(ϕ)+ 2π Λ
z (x) 2 = γ 2 +1 ( 1+γ ) 2 z 0 2 + 1 γ 2 1 x 2
P D L = 2 20 l o g 10 ( 1 + 10 P i s o l a t i o n 20 )

Metrics