Abstract

We investigate the impact of Distributed Bragg Reflectors (DBR), ion-milled directly on top of Fabry-Perot type Quantum Cascade (QC) laser ridges, following fabrication and processing of the devices and observe a more than 10-fold reduction in spectral full-width-half-maximum (FWHM) and a maximum of 20dB side-mode suppression ratio (SMSR), maintained to peak optical power. As predicted by our model, and experimentally verified, there is a “sweet-spot” in terms of grating length, ~200 µm on a 3 mm long laser ridge, and a trade-off between spectral narrowing and output power, set by the grating depth, varied from 1.8 to 2.5 µm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
    [CrossRef]
  2. Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
    [CrossRef]
  3. W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).
  4. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
    [CrossRef]
  5. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).
  6. P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
    [CrossRef]
  7. L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
    [CrossRef]
  8. J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
    [CrossRef]
  9. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012).
    [CrossRef] [PubMed]
  10. A. Yariv and P. Yeh, Optical Waves in Crystals, (Wiley Classics Library Edition, 2003), pp. 165–176.
  11. P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

2012

2011

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

2010

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

2007

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

2005

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

2001

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

2000

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

1997

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Bertagnolli, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Bewley, W. W.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Capasso, F.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Curl, R. F.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Dikmelik, Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Escarra, M. D.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Evans, A. J.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Faist, J.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Fan, J.

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

Fan, J.-Y.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Finger, N.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Forchel, A.

P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012).
[CrossRef] [PubMed]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

Franz, K. J.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Friedl, J.

Fuchs, P.

Gianordoli, S.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Gmachl, C.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Gmachl, C. F.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Gornik, E.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Höfling, S.

P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012).
[CrossRef] [PubMed]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

Hvozdara, L.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Kamp, M.

Khurgin, J. B.

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Kim, C. S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Koeth, J.

Lindle, J. R.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Liu, P. Q.

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Lugstein, A.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Maulini, R.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Meyer, J. R.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Nähle, L.

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

Razeghi, M.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Schrenk, W.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Semmel, J.

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Slivken, S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Strasser, G.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Tittel, F. K.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Unterrainer, K.

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

Vurgaftman, I.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Wang, X.

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Worschech, L.

Wysocki, G.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Yao, Y.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Yu, J. S.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Appl. Phys. B

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B81(6), 769–777 (2005).

Appl. Phys. Lett.

P. Q. Liu, X. Wang, J. Fan, and C. Gmachl, “Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity,” Appl. Phys. Lett.98(6), 061110 (2011).
[CrossRef]

L. Hvozdara, A. Lugstein, N. Finger, S. Gianordoli, W. Schrenk, K. Unterrainer, E. Bertagnolli, G. Strasser, and E. Gornik, “Quantum cascade lasers with monolithic air-semiconductor Bragg reflector,” Appl. Phys. Lett.77(9), 1241 (2000).
[CrossRef]

J. Semmel, L. Nähle, S. Höfling, and A. Forchel, “Edge emitting quantum cascade microlasers on InP with deeply etched one-dimensional photonic crystals,” Appl. Phys. Lett.91(7), 071104 (2007).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

IEEE J. Quantum Electron.

W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, “Beam steering in high-power CW quantum-cascade lasers,” IEEE J. Quantum Electron.41, 833–841 June (2005).

Nat. Photonics

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

P. Q. Liu, A. J. Hoffman, M. D. Escarra, K. J. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, “Highly power-efficient quantum cascade lasers,” Nat. Photonics4(2), 95–98 (2010).

Opt. Express

Rep. Prog. Phys.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals, (Wiley Classics Library Edition, 2003), pp. 165–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulation of Bragg reflectivity. (a) The Bragg reflectivity as a function of wavelength is shown for gratings of length L = 200, 150, 100 µm and an index contrast of Δn = 0.072, 0.036, 0.018 respectively. The inset of part (a) shows the experimental spectral output of a laser with a 200 µm long and 2.5 µm deep (Δn = 0.072) grating. Also illustrated is the peak reflectivity as a function of (b) grating length (c) index contrast (grating depth) and (d) duty cycle.

Fig. 2
Fig. 2

Surface plot of normalized intensity where a TM polarized electric field is injected from the right and its transmission through the DBR region (285 periods) for (a) λ = 4.6 µm, corresponding to the center wavelength of the reflectivity stop-band and (b) λ = 4.0 µm, well outside of the reflectivity band. The cavity length is set to 3 mm.

Fig. 3
Fig. 3

(a) Schematics of a QC laser ridge with a Bragg reflector milled closer to the back facet, emphasized by the red rectangle. (b) A magnified SEM image of the grating with a cross-section cut away, illustrating the correlation between depth and duty cycle. (c) SEM images of the grating fabricated towards the back facet of a QC laser ridge.

Fig. 4
Fig. 4

(a) LIV characteristics of a 30 µm wide unstable ridge laser before and after the application of a 85 µm long, 2.4 µm deep grating. The error bars indicate the extent of the power fluctuations due to beam pointing instabilities, before the application of the grating. (b) LIV measurements from a 10 µm wide device, for grating lengths increasing from zero, in steps of 49 µm, up to 294 µm.

Fig. 5
Fig. 5

The spectral output as a function of injection current covering the range from just above threshold up to and including the optical peak power (a) before and (b) after the application of the grating. The result shows a more than 10-fold reduction in FWHM and a maximum SMSR of up to 20dB, shown in (c), for a 200 µm long, 2.5 µm deep grating at peak power (I = 2.6 A).

Fig. 6
Fig. 6

The threshold current as a function of grating length for four devices (a) with gratings of different depth. (b) The laser output power as a function of grating length. (c,d) The effective number of lasing modes, quantifying the change in spectral width is shown as a function of grating length and depth at peak optical power. The grating length is set to 200 µm for the depth measurements.

Metrics