Abstract

Quad-Carrier Quadrature Phase Shift Keyed orthogonal frequency division multiplexing (QPSK-OFDM) signal transmission and reception is successfully demonstrated with blind equalization like a 25-ary quadrature amplitude modulation (25-QAM) signal with cascaded multi-modulus algorithm (CMMA) equalization. The phase recovery can be realized with simple Viterbi algorithm and the frequency offset estimation (FOE) should be done with 25-QAM signal before 4-point fast Fourier transform (FFT). 48-Gbit/s Quad-Carrier QPSK-OFDM signal is successfully transmitted over 80-km SMF-28 without penalty.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol.27(3), 189–204 (2009).
    [CrossRef]
  2. S. L. Jansen, I. Morita, T. C. W. Schenck, N. Takeda, and H. Tanaka, “Coherent optical 25.8-Gb/s OFDM transmission over 4160-km SSMF,” J. Lightwave Technol.26(1), 6–15 (2008).
    [CrossRef]
  3. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
    [CrossRef]
  4. W.-R. Peng, T. Tsuritani, and I. Morita, “Simple carrier recovery approach for RF-pilot-assisted PDM-CO-OFDM systems,” J. Lightwave Technol.31(15), 2555–2564 (2013).
    [CrossRef]
  5. A. J. Lowery, “Improving sensitivity and spectra efficiency in direct-detection optical OFDM systems,” in Proc. OFC’08. (2008), paper OMM4.
    [CrossRef]
  6. L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol.30(20), 3219–3225 (2012).
    [CrossRef]
  7. W.-R. Peng, H. Takahashi, I. Morita, and T. Tsuritani, “Per-symbol-based digital back-propagation approach for PDM-CO-OFDM transmission systems,” Opt. Express21(2), 1547–1554 (2013).
    [CrossRef] [PubMed]
  8. T. Kobayashi, A. Sano, E. Yamada, E. Yoshida, and Y. Miyamoto, “Over 100 Gb/s electro-optically multiplexed OFDM for high capacity optical transport network,” J. Lightwave Technol.27(16), 3714–3720 (2009).
    [CrossRef]
  9. J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200-km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
    [CrossRef]
  10. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol.29(4), 571–577 (2011).
    [CrossRef]
  11. J. Yu and X. Zhou, “16 × 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett.22(17), 1312–1314 (2010).
    [CrossRef]
  12. J. Zhang, J. Yu, N. Chi, Z. Dong, J. G. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol.31(7), 1073–1078 (2013).
    [CrossRef]
  13. J. Yu, J. Zhang, Z. Dong, Z. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Li, “Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs,” Opt. Express21(13), 15686–15691 (2013).
    [CrossRef] [PubMed]

2013 (4)

2012 (1)

2011 (2)

2010 (2)

J. Yu and X. Zhou, “16 × 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett.22(17), 1312–1314 (2010).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

2009 (2)

2008 (1)

Armstrong, J.

Birk, M.

Borel, P. I.

Cai, Y.

Cao, Z.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Chen, L.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Chi, N.

Chien, H. C.

Dong, Z.

Fang, Y.

Huang, M.-F.

Jansen, S. L.

Jia, Z.

Kobayashi, T.

Li, X.

Lingle, R.

Magill, P.

Miyamoto, Y.

Morita, I.

Nelson, L.

Peckham, D. W.

Peng, W.-R.

Sano, A.

Schenck, T. C. W.

Shao, Y.

Takahashi, H.

Takeda, N.

Tanaka, H.

Tao, L.

Tsuritani, T.

Wang, T.

Wang, W.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

Xiao, X.

Yamada, E.

Yoshida, E.

Yu, J.

J. Yu, J. Zhang, Z. Dong, Z. Jia, H. C. Chien, Y. Cai, X. Xiao, and X. Li, “Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs,” Opt. Express21(13), 15686–15691 (2013).
[CrossRef] [PubMed]

J. Zhang, J. Yu, N. Chi, Z. Dong, J. G. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol.31(7), 1073–1078 (2013).
[CrossRef]

L. Tao, J. Yu, Y. Fang, J. Zhang, Y. Shao, and N. Chi, “Analysis of noise spread in optical DFT-S OFDM systems,” J. Lightwave Technol.30(20), 3219–3225 (2012).
[CrossRef]

X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol.29(4), 571–577 (2011).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200-km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

J. Yu and X. Zhou, “16 × 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett.22(17), 1312–1314 (2010).
[CrossRef]

Yu, J. G.

Zhang, J.

Zhou, X.

Zhu, B.

IEEE Photon. Technol. Lett. (3)

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21×100 Gb/s) OFDM optical signal generation and transmission over 3200-km Fiber,” IEEE Photon. Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

J. Yu and X. Zhou, “16 × 107-Gb/s 12.5-GHz-Spaced PDM-36QAM Transmission Over 400 km of Standard Single-Mode Fiber,” IEEE Photon. Technol. Lett.22(17), 1312–1314 (2010).
[CrossRef]

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,” IEEE Photon. Technol. Lett.22(11), 736–738 (2010).
[CrossRef]

J. Lightwave Technol. (7)

Opt. Express (2)

Other (1)

A. J. Lowery, “Improving sensitivity and spectra efficiency in direct-detection optical OFDM systems,” in Proc. OFC’08. (2008), paper OMM4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The spectral distribution of the subcarriers in Quad-Carrier QPSK-OFDM signal, and (b) signal conversion between QPSK and 25-QAM.

Fig. 2
Fig. 2

The CCDFs of the traditional QPSK-OFDM signal with 256 subcarriers and Quad-Carrier QPSK-OFDM signal.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Constellations in different stages of DSP: (a) FOE after 4-point FFT, and (b) FOE before 4-point FFT.

Fig. 5
Fig. 5

Measured BER of Quad-Carrier QPSK-OFDM signal versus OSNR.

Fig. 6
Fig. 6

Measured BER versus receiver bandwidth.

Fig. 7
Fig. 7

Measured OSNR penalty and BER when the receiver bandwidth is set between 5 and 6GHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s(t)= 1 N k=0 N1 c k exp(j2π f k t) (1tT).
s(t)= 1 2 k=0 3 c k exp(j2π f k t) = 1 2 ( c 0 + c 1 exp(j2π t 4 )+ c 2 exp(j2π t 2 )+ c 3 exp(j2π 3t 4 ))(0t3).
s(0)= 1 2 ( c 0 + c 1 + c 2 + c 3 ),s(1)= 1 2 ( c 0 +j c 1 c 2 j c 3 ), s(2)= 1 2 ( c 0 c 1 + c 2 c 3 ),s(3)= 1 2 ( c 0 j c 1 c 2 +j c 3 ).

Metrics