Abstract

A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 105. The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda and T. Baba, Roadmap on Photonic Crystals, 1 (Kluwer Academic Publisher, 2003).
    [CrossRef]
  2. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol.24, 4554–4567 (2006).
    [CrossRef]
  3. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
    [CrossRef]
  4. M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
    [CrossRef]
  5. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
    [CrossRef]
  6. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
    [CrossRef]
  7. M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
    [CrossRef]
  8. L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009).
    [CrossRef] [PubMed]
  9. F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
    [CrossRef]
  10. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
    [CrossRef] [PubMed]
  11. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
    [CrossRef]
  12. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010).
    [CrossRef] [PubMed]
  13. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18, 3693–3699 (2010).
    [CrossRef] [PubMed]
  14. T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
    [CrossRef]
  15. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
    [CrossRef]
  16. C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011).
    [CrossRef] [PubMed]
  17. E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013).
    [CrossRef] [PubMed]
  18. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express20, 6816–6824 (2012).
    [CrossRef] [PubMed]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004).
    [CrossRef] [PubMed]
  20. X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
    [CrossRef]
  21. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B22, 2581–2595 (2005).
    [CrossRef]
  22. L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008).
    [CrossRef] [PubMed]
  23. H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.
  24. G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008).
    [CrossRef]
  25. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73, 235114 (2006).
    [CrossRef]
  26. K. Sakoda, Optical Properties of Photonic Crystals, 2 (Springer-Verlag, Berlin, 2004).
  27. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008).
    [CrossRef] [PubMed]
  28. C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Tech. B31, 050606 (2013).
    [CrossRef]
  29. M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express13, 2487–2502 (2005).
    [CrossRef] [PubMed]
  30. V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
    [CrossRef]
  31. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
    [CrossRef]
  32. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18, 19120–19128 (2010).
    [CrossRef] [PubMed]
  33. N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013).
    [CrossRef] [PubMed]
  34. D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
    [CrossRef]

2013

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013).
[CrossRef] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Tech. B31, 050606 (2013).
[CrossRef]

N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013).
[CrossRef] [PubMed]

2012

2011

C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011).
[CrossRef] [PubMed]

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

2010

2009

2008

2007

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

2006

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73, 235114 (2006).
[CrossRef]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol.24, 4554–4567 (2006).
[CrossRef]

2005

2004

2003

X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
[CrossRef]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

2002

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

2001

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
[CrossRef]

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

1999

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

1998

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Akhavan, H.

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Alagappan, G.

G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008).
[CrossRef]

Alén, B.

Almeida, V. R.

Altug, H.

Andreani, L. C.

Astratov, V.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Astratov, V. N.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Aydin, D.

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Baba, T.

S. Noda and T. Baba, Roadmap on Photonic Crystals, 1 (Kluwer Academic Publisher, 2003).
[CrossRef]

Barrios, C. A.

Bégin, G.

Beheiry, M. E.

Bog, U.

Bouchoule, S.

Brand, S.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Brunstein, M.

Celanovic, I.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

Chan, D. L. C.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

Chang, T.-Y.

Charvolin, T.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Chua, S.-L.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Culshaw, I.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Culshaw, I. S.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Dal’zotto, B.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

De La Rue, R.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

De La Rue, R. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Drouard, E.

Dutt, A.

El-Beheiry, M.

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Estrada, L. C.

Fan, S.

Ferrier, L.

Galisteo-López, J. F.

Galli, M.

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73, 235114 (2006).
[CrossRef]

Gerken, M.

Hadji, E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Heitzmann, M.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Huang, M.

Huang, N.

Jalaguier, E.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Jaquay, E.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013).
[CrossRef] [PubMed]

Joannopoulos, J. D.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

Johnson, S. G.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Kaji, T.

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

Karimov, O. Z.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Kim, J.-S.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Krauss, T.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Krauss, T. F.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Kuga, T.

Kuramochi, E.

Kwon, S.-H.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Leclercq, J.

Leclereq, J.-L.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Lee, J.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Lee, Y.-H.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Lee, Y.-J.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Le-Gratiet, L.

Lemmer, U.

Letartre, X.

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B22, 2581–2595 (2005).
[CrossRef]

X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Letatre, X.

Levenson, A.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

Levenson, J. A.

Levi, O.

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010).
[CrossRef] [PubMed]

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Liang, X.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Lin, C.

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Tech. B31, 050606 (2013).
[CrossRef]

Lipson, M.

Liu, V.

Ma, J.

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Mappes, T.

Martinez, O. E.

Martínez, L. J.

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Mejia, C. A.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013).
[CrossRef] [PubMed]

C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011).
[CrossRef] [PubMed]

Monat, C.

Monnier, P.

Moriceau, H.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Mouette, J.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
[CrossRef]

Nazirizadeh, Y.

Nier, M. E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Noda, S.

Notomi, M.

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
[CrossRef]

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

Otomo, A.

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

Perreau, R.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Picard, E.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Postigo, P. A.

Povinelli, M. L.

Prieto, I.

Raineri, F.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

Raj, R.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

Regreny, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Rodriguez, A. W.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Rojo Romeo, P.

Rojo-Romeo, P.

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008).
[CrossRef] [PubMed]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Sagnes, I.

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

K. Sakoda, Optical Properties of Photonic Crystals, 2 (Springer-Verlag, Berlin, 2004).

Schilling, R.

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Seassal, C.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009).
[CrossRef] [PubMed]

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B22, 2581–2595 (2005).
[CrossRef]

X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
[CrossRef]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Sekula, S.

Shapira, O.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Skolnick, M.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Skolnick, M. S.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Skorobogatiy, M.

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Soares, J.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Soljacic, M.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

Stevenson, R. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Sun, H. D.

G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008).
[CrossRef]

Sun, X. W.

G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
[CrossRef]

Talneau, A.

Tamamura, T.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
[CrossRef]

Taniyama, H.

Torii, Y.

Ueda, R.

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

Vecchi, G.

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

Viktorovitch, P.

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009).
[CrossRef] [PubMed]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008).
[CrossRef] [PubMed]

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B22, 2581–2595 (2005).
[CrossRef]

X. Letartre, J. Mouette, J. Leclercq, P. Rojo Romeo, C. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and MOEMS structures,” J. Lightwave Technol.21, 1691–1699 (2003).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

Whittaker, D.

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Whittaker, D. M.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

Xu, Q.

Yacomotti, A. M.

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18, 3693–3699 (2010).
[CrossRef] [PubMed]

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

Yamada, T.

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

Yamamoto, T.

Yanik, A. A.

Yoshikawa, Y.

Zelsmann, M.

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Zhen, B.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Notomi, H. Suzuki, and T. Tamamura, “Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps,” Appl. Phys. Lett.78, 1325–1327 (2001).
[CrossRef]

F. Raineri, G. Vecchi, A. M. Yacomotti, C. Seassal, P. Viktorovitch, R. Raj, and A. Levenson, “Doubly resonant photonic crystal for efficient laser operation: Pumping and lasing at low group velocity photonic modes,” Appl. Phys. Lett.86, 011116 (2005).
[CrossRef]

M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal’zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, and X. Letartre, “Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator,” Appl. Phys. Lett.83, 2542–2544 (2003).
[CrossRef]

H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80, 3476–3478 (2002).
[CrossRef]

Electron. Lett.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, R. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39, 526–528 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Chem. Lett.

T. Kaji, T. Yamada, R. Ueda, and A. Otomo, “Enhanced fluorescence emission from single molecules on a two-dimensional photonic crystal slab with low background emission,” J. Phys. Chem. Lett.2, 1651–1656 (2011).
[CrossRef]

J. Vac. Tech. B

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Tech. B31, 050606 (2013).
[CrossRef]

Nano Letters

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Letters13, 2290–2294 (2013).
[CrossRef] [PubMed]

Nat Nanotechnology

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat Nanotechnology2, 515–520 (2007).
[CrossRef]

Opt. Express

M. Skorobogatiy, G. Bégin, and A. Talneau, “Statistical analysis of geometrical imperfections from the images of 2D photonic crystals,” Opt. Express13, 2487–2502 (2005).
[CrossRef] [PubMed]

L. Ferrier, P. Rojo-Romeo, E. Drouard, X. Letatre, and P. Viktorovitch, “Slow bloch mode confinement in 2D photonic crystals for surface operating devices,” Opt. Express16, 3136–3145 (2008).
[CrossRef] [PubMed]

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express16, 13809–13817 (2008).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, P. Viktorovitch, and P. A. Postigo, “Two-dimensional surface emitting photonic crystal laser with hybrid triangular-graphite structure,” Opt. Express17, 15043–15051 (2009).
[CrossRef] [PubMed]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
[CrossRef]

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express18, 3693–3699 (2010).
[CrossRef] [PubMed]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express18, 19120–19128 (2010).
[CrossRef] [PubMed]

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010).
[CrossRef] [PubMed]

C. A. Mejia, A. Dutt, and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express19, 11422–11428 (2011).
[CrossRef] [PubMed]

J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a slot-Suzuki-phase photonic crystal lattice,” Opt. Express20, 6816–6824 (2012).
[CrossRef] [PubMed]

N. Huang, L. J. Martínez, and M. L. Povinelli, “Tuning the transmission lineshape of a photonic crystal slab guided-resonance mode by polarization control,” Opt. Express21, 20675–20682 (2013).
[CrossRef] [PubMed]

Opt. Lett.

Optoelectronics, IEE Proceedings -

V. Astratov, M. Skolnick, S. Brand, T. Krauss, O. Z. Karimov, R. M. Stevenson, D. Whittaker, I. Culshaw, and R. De La Rue, “Experimental technique to determine the band structure of two-dimensional photonic lattices,” Optoelectronics, IEE Proceedings -145, 398–402 (1998).
[CrossRef]

Phys. Rev. A

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A74, 064901 (2006).
[CrossRef]

Phys. Rev. B

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001).
[CrossRef]

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B60, R16255(1999).
[CrossRef]

G. Alagappan, X. W. Sun, and H. D. Sun, “Symmetries of the eigenstates in an anisotropic photonic crystal,” Phys. Rev. B77, 195117 (2008).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B73, 235114 (2006).
[CrossRef]

Proc. Natl. Acad. Sci.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci.110, 13711–13716 (2013).
[CrossRef] [PubMed]

Other

S. Noda and T. Baba, Roadmap on Photonic Crystals, 1 (Kluwer Academic Publisher, 2003).
[CrossRef]

K. Sakoda, Optical Properties of Photonic Crystals, 2 (Springer-Verlag, Berlin, 2004).

H. Akhavan, M. El-Beheiry, R. Schilling, D. Aydin, and O. Levi, “Evaluation of high quality factor photonic crystal slabs for biosensing,” in “CLEO:2011 - Laser Applications to Photonic Applications,” (Optical Society of America, 2011), p. JWA105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Diagram of the graphite photonic crystal lattice. b) Diagram of the slot-graphite photonic crystal lattice. The arrows represent the primitive vectors of the Bravais lattice.

Fig. 2
Fig. 2

a) Photonic band structure of the graphite photonic crystal lattice. b) Photonic band structure of the slot-graphite photonic crystal lattice. Upper red line represents the light line of the upper cladding material. Bottom red line represents silica light line. c) Hz-field profile (left) and E2 profile (right) of the fourth band (above) and fifth band (below) of the graphite photonic crystal lattice. d) Hz-field profile (left) and E2 profile (right) of the fourth band (below) and fifth band (above) of the slot-graphite photonic crystal lattice.

Fig. 3
Fig. 3

a) Evolution of the simulated Q factor (red) and wavelength (black) as function a of wy. b) Evolution of the simulated Q factor (red) and wavelength (black) as a function of wx. Symbols indicate calculated values, and lines are guides to the eye.

Fig. 4
Fig. 4

SEM image of a fabricated slot-graphite device. The smallest slot dimension is wy = 59 nm. See parameters in the main text.

Fig. 5
Fig. 5

a) Diagram of experimental setup used to characterize the optical properties of the photonic crystal lattices. Two crossed polarizers (PC) are applied before and after the device to cancel out Fabry-Pérot effects. TL: tunable laser; MO: microscope objective; LS: lens; TS: translation stage; PD: photodiode. b) A typical measured spectrum. The right transmission peak corresponds to the dipole mode, and the left peak corresponds to the slot mode, which has a higher Q factor.

Fig. 6
Fig. 6

Several representative spectra of the slot-graphite devices as the dimension wy increases from wy ≃ 59 nm (black curve) to wy ≃ 93 nm (orange curve). The intermediate values are ∼62 nm, ∼80 nm, ∼83 nm and ∼87 nm. The other dimensions of the devices are kept constant. Numbers with arrows indicate Q factors.

Fig. 7
Fig. 7

a) Evolution of the Q factor as a function of wy. b) Evolution of the wavelength as a function wy. Blue dots represent experimental data. Black line represent simulated data. Red lines represent a guide to the eye in a) and a linear fit in b).

Metrics