Abstract

We report the successful fabrication of a novel type of blackbody material based on a graphene nanostructure. We demonstrate that the graphene nanostructure not only shows a low reflectance comparable to that of a carbon nanotube array but also shows an extremely high heat resistance at temperatures greater than 2500 K. The graphene nanostructure, which has an emissivity higher than 0.99 over a wide range of wavelengths, behaves as a standard blackbody material; therefore, the radiation spectrum and the temperature can be precisely measured in a simple manner. Here, the spectral emissivities of tungsten and tantalum are experimentally obtained using this ideal blackbody material and are compared to previously reported spectra. We clearly demonstrate the existence of a temperature-independent fixed point of emissivity at a certain wavelength. Both the spectral emissivity as a function of temperature and the cross-over point in the emissivity spectrum are well described by the complex dielectric function based on the Lorentz-Drude model with the phonon-scattering effect.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
    [CrossRef]
  2. A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
    [CrossRef]
  3. C. G. Granqvist, “Radiative heating and cooling with spectrally selective surfaces,” Appl. Opt.20(15), 2606–2615 (1981).
    [CrossRef] [PubMed]
  4. S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
    [CrossRef]
  5. R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
    [CrossRef]
  6. C. E. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Met. Finish.78, 21–24 (1980).
  7. E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965).
    [CrossRef]
  8. F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
    [CrossRef]
  9. H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express18(6), 6347–6359 (2010).
    [CrossRef] [PubMed]
  10. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
    [CrossRef] [PubMed]
  11. Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011).
    [CrossRef] [PubMed]
  12. “The darkest manmade substance,” in Guinness World Records (Bantam Doubleday Dell, 2004), p 242.
  13. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
    [CrossRef] [PubMed]
  14. T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
    [CrossRef] [PubMed]
  15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  16. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
    [CrossRef] [PubMed]
  17. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  18. W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925).
    [CrossRef]
  19. A. G. Worthing, “Physical properties of well seasoned molybdenum and tantalum as a function of temperature,” Phys. Rev.28(1), 190–201 (1926).
    [CrossRef]
  20. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am.56(11), 1546–1550 (1966).
    [CrossRef]
  21. J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica20(7–12), 690–714 (1954).
    [CrossRef]
  22. L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).
  23. C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
    [CrossRef]
  24. D. T. F. Marple, “Spectral emissivity of rhenium,” J. Opt. Soc. Am.46(7), 490–494 (1956).
    [CrossRef]
  25. T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004).
    [CrossRef]
  26. T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005).
    [CrossRef]
  27. K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
    [CrossRef]
  28. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
    [CrossRef] [PubMed]
  29. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  30. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
    [CrossRef] [PubMed]
  31. M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
    [CrossRef] [PubMed]
  32. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
    [CrossRef] [PubMed]
  33. X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
    [CrossRef] [PubMed]
  34. W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
    [CrossRef] [PubMed]
  35. P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
    [CrossRef]
  36. M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Ann. Phys.309(3), 553–563 (1901).
    [CrossRef]
  37. J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
    [CrossRef]
  38. M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
    [CrossRef]
  39. P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
    [CrossRef]
  40. M. F. Modest, Radiative Heat Transfer (Academic, 2013), Chapter 3.
  41. D. J. Price, “A theory of reflectivity and emissivity,” Proc. Phys. Soc.62(5), 278–283 (1949).
    [CrossRef]
  42. S. Roberts, “Interpretation of the optical properties of metal surfaces,” Phys. Rev.100(6), 1667–1671 (1955).
    [CrossRef]
  43. S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev.114(1), 104–115 (1959).
    [CrossRef]
  44. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University, 1972), Chapter 7.
  45. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

H. Bao, X. Ruan, and T. S. Fisher, “Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations,” Opt. Express18(6), 6347–6359 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
[CrossRef]

2009 (2)

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

2008 (3)

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

2007 (3)

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

2005 (4)

T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005).
[CrossRef]

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
[CrossRef] [PubMed]

T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004).
[CrossRef]

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

2003 (1)

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

2002 (3)

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
[CrossRef]

1998 (1)

1997 (1)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

1995 (1)

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

1992 (1)

C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
[CrossRef]

1990 (1)

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

1981 (1)

1980 (1)

C. E. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Met. Finish.78, 21–24 (1980).

1972 (1)

L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).

1966 (1)

1965 (1)

E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965).
[CrossRef]

1959 (1)

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev.114(1), 104–115 (1959).
[CrossRef]

1956 (1)

1955 (1)

S. Roberts, “Interpretation of the optical properties of metal surfaces,” Phys. Rev.100(6), 1667–1671 (1955).
[CrossRef]

1954 (1)

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica20(7–12), 690–714 (1954).
[CrossRef]

1949 (1)

D. J. Price, “A theory of reflectivity and emissivity,” Proc. Phys. Soc.62(5), 278–283 (1949).
[CrossRef]

1926 (1)

A. G. Worthing, “Physical properties of well seasoned molybdenum and tantalum as a function of temperature,” Phys. Rev.28(1), 190–201 (1926).
[CrossRef]

1925 (1)

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925).
[CrossRef]

1901 (1)

M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Ann. Phys.309(3), 553–563 (1901).
[CrossRef]

Ajayan, P. M.

Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

Aliev, A. E.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

Atkinson, K. R.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
[CrossRef] [PubMed]

Bacsa, W. S.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Bao, H.

Barnes, B. T.

Baughman, R. H.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
[CrossRef] [PubMed]

Bhandari, D. R.

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
[CrossRef]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Brewer, P. J.

R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
[CrossRef]

Brown, R. C.

R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
[CrossRef]

Bur, J. A.

Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

Campbell, E. E. B.

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

Cao, A.

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Châtelain, A.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Chekhovskoi, V. Y.

L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).

Ci, L.

Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

De Vos, J. C.

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica20(7–12), 690–714 (1954).
[CrossRef]

deHeer, W. A.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Djurisic, A. B.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Elazar, J. M.

Fan, S.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Fang, S.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Finnie, P.

P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Fisher, T. S.

Flicker, J. D.

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Forro, L.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Forsythe, W. E.

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925).
[CrossRef]

Futaba, D. N.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Gerfin, T.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Granqvist, C. G.

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Hanssen, L. M.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Hata, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Hayamizu, Y.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Hiernaut, J. P.

C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
[CrossRef]

Horiuchi, M.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

Hsieh, M. L.

Humphrey-Baker, R.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Hyland, G. J.

C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
[CrossRef]

Ishii, J.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Ishikawa, N.

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Jiang, K.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Johnson, C. E.

C. E. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Met. Finish.78, 21–24 (1980).

Jonsson, M.

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Kishida, H.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Kodama, S.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

Kunii, T.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

Kuroda, K.

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

Latyev, L. N.

L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, B. J.

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Lee, S. B.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

Lefebvre, J.

P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
[CrossRef]

Li, P.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Li, Q.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Lin, S. Y.

Lin, S.-Y.

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

Liu, M.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Majewski, M. L.

Marple, D. T. F.

Matsumoto, T.

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005).
[CrossRef]

T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004).
[CrossRef]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Milton, J. T.

R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
[CrossRef]

Mimura, H.

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005).
[CrossRef]

T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004).
[CrossRef]

Mizuno, K.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Nakayama, Y.

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Neo, Y.

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Nerushev, O. A.

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Okada, M.

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Phillipp, H. R.

E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

Planck, M.

M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Ann. Phys.309(3), 553–563 (1901).
[CrossRef]

Price, D. J.

D. J. Price, “A theory of reflectivity and emissivity,” Proc. Phys. Soc.62(5), 278–283 (1949).
[CrossRef]

Rakic, A. D.

Ready, W. J.

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Roberts, S.

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev.114(1), 104–115 (1959).
[CrossRef]

S. Roberts, “Interpretation of the optical properties of metal surfaces,” Phys. Rev.100(6), 1667–1671 (1955).
[CrossRef]

Rohmund, F.

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

Ronchi, C.

C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
[CrossRef]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Ruan, X.

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Sharma, A. K.

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
[CrossRef]

Shashikala, A. R.

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
[CrossRef]

Shestakov, E. N.

L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).

Shiozawa, K.

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Sun, J.

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Sveningsson, M.

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

Taft, E. A.

E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965).
[CrossRef]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Tomita, M.

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

Ugarte, D.

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Vinten, P.

P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
[CrossRef]

Wang, X. J.

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Wei, B.

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

Wei, J.

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

Williams, C. D.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

Wilthan, B.

Worthing, A. G.

A. G. Worthing, “Physical properties of well seasoned molybdenum and tantalum as a function of temperature,” Phys. Rev.28(1), 190–201 (1926).
[CrossRef]

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925).
[CrossRef]

Wu, D.

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

Xu, X.

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

Yang, Z.-P.

Z.-P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, “Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array,” Appl. Opt.50(13), 1850–1855 (2011).
[CrossRef] [PubMed]

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

Yasuda, S.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Yumura, M.

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Zakhidov, A. A.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

Zhang, M.

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
[CrossRef] [PubMed]

Zhang, X.

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

Zhang, Y.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Zhang, Z. M.

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Zhu, H.

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

Ann. Phys. (1)

M. Planck, “Ueber das gesetz der energieverteilung im normalspectrum,” Ann. Phys.309(3), 553–563 (1901).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (5)

T. Matsumoto and H. Mimura, “Intense electron emission from graphite nanocraters and their application to time resolved X-ray radiography,” Appl. Phys. Lett.84(10), 1804–1806 (2004).
[CrossRef]

J. Wei, H. Zhu, D. Wu, and B. Wei, “Carbon nanotube filaments in household light bulbs,” Appl. Phys. Lett.84(24), 4869–4871 (2004).
[CrossRef]

M. Sveningsson, M. Jonsson, O. A. Nerushev, F. Rohmund, and E. E. B. Campbell, “Blackbody radiation from resistively heated multiwalled carbon nanotubes during field emission,” Appl. Phys. Lett.81(6), 1095–1097 (2002).
[CrossRef]

P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, “Polarized incandescent light emission from carbon nanotubes,” Appl. Phys. Lett.82(11), 1763–1765 (2003).
[CrossRef]

P. Vinten, J. Lefebvre, and P. Finnie, “Visible iridescence from self-assembled periodic rippling in vertically aligned carbon nanotube forests,” Appl. Phys. Lett.97(10), 101901 (2010).
[CrossRef]

Astrophys. J. (1)

W. E. Forsythe and A. G. Worthing, “The properties of tungsten and the characteristics of tungsten lamps,” Astrophys. J.61, 146–185 (1925).
[CrossRef]

High Temp. High Press. (1)

L. N. Latyev, V. Y. Chekhovskoi, and E. N. Shestakov, “Tungsten as a standard material for monochromatic emissivity,” High Temp. High Press.4, 679–686 (1972).

IEEE Trans. Instrum. Meas. (1)

S. Kodama, M. Horiuchi, T. Kunii, and K. Kuroda, “Ultra-black nickel-phosphorous alloy optical absorber,” IEEE Trans. Instrum. Meas.39(1), 230–232 (1990).
[CrossRef]

J. Mater. Chem. (1)

R. C. Brown, P. J. Brewer, and J. T. Milton, “The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces,” J. Mater. Chem.12(9), 2749–2754 (2002).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Vac. Sci. Technol. B (1)

T. Matsumoto and H. Mimura, “High intensity pulse X-ray generation by using graphite-nanocrater cold cathode,” J. Vac. Sci. Technol. B23(2), 831–835 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Shiozawa, Y. Neo, M. Okada, N. Ishikawa, Y. Nakayama, and H. Mimura, “Structural investigation of sputter-induced graphite nanoneedle field emitters,” Jpn. J. Appl. Phys.46(9B), 6419–6422 (2007).
[CrossRef]

Met. Finish. (1)

C. E. Johnson, “Black electroless nickel surface morphologies with extremely high light absorption capacity,” Met. Finish.78, 21–24 (1980).

Metrologia (1)

C. Ronchi, J. P. Hiernaut, and G. J. Hyland, “Emissivity X points in solid and liquid refractory transition metals,” Metrologia29(4), 261–271 (1992).
[CrossRef]

Nano Lett. (1)

Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett.8(2), 446–451 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, “Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes,” Nanotechnology20(21), 215704 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (4)

E. A. Taft and H. R. Phillipp, “Optical properties of graphite,” Phys. Rev.138(1A), A197–A202 (1965).
[CrossRef]

A. G. Worthing, “Physical properties of well seasoned molybdenum and tantalum as a function of temperature,” Phys. Rev.28(1), 190–201 (1926).
[CrossRef]

S. Roberts, “Interpretation of the optical properties of metal surfaces,” Phys. Rev.100(6), 1667–1671 (1955).
[CrossRef]

S. Roberts, “Optical properties of nickel and tungsten and their interpretation according to Drude’s formula,” Phys. Rev.114(1), 104–115 (1959).
[CrossRef]

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.77(3), 031611 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett.78(22), 4289–4292 (1997).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006).
[CrossRef] [PubMed]

Physica (1)

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica20(7–12), 690–714 (1954).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A. (1)

K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, “A black body absorber from vertically aligned single-walled carbon nanotubes,” Proc. Natl. Acad. Sci. U. S. A.106(15), 6044–6047 (2009).
[CrossRef] [PubMed]

Proc. Phys. Soc. (1)

D. J. Price, “A theory of reflectivity and emissivity,” Proc. Phys. Soc.62(5), 278–283 (1949).
[CrossRef]

Science (4)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008).
[CrossRef] [PubMed]

M. Zhang, K. R. Atkinson, and R. H. Baughman, “Multifunctional carbon nanotube yarns by downsizing an ancient technology,” Science306(5700), 1358–1361 (2004).
[CrossRef] [PubMed]

M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science309(5738), 1215–1219 (2005).
[CrossRef] [PubMed]

W. A. deHeer, W. S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned carbon nanotube films: Production and optical and electronic properties,” Science268(5212), 845–847 (1995).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

A. Cao, X. Zhang, X. Xu, B. Wei, and D. Wu, “Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption,” Sol. Energy Mater. Sol. Cells70(4), 481–486 (2002).
[CrossRef]

A. R. Shashikala, A. K. Sharma, and D. R. Bhandari, “Solar selective black nickel-cobalt coatings on aluminum alloys,” Sol. Energy Mater. Sol. Cells91(7), 629–635 (2007).
[CrossRef]

Other (3)

“The darkest manmade substance,” in Guinness World Records (Bantam Doubleday Dell, 2004), p 242.

J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University, 1972), Chapter 7.

M. F. Modest, Radiative Heat Transfer (Academic, 2013), Chapter 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scanning electron microscopy image of a vertically aligned carbon nanotube sample. (b) Scanning electron microscopy image of a graphene nanoneedle array sample. The inset shows photographic images of the carbon substrate before etching (left side) and after etching (right side). (c) Transmission electron microscopy image of a single graphene nanoneedle. (d) High-resolution transmission electron microscopy image of a single graphene nanoneedle. (e) Selected-area electron diffraction pattern. Based on the spacing of the c-axis diffraction pattern, the structure of the needle was determined to be a two-dimensional graphene sheet with an interplanar spacing of 0.36 nm. Using the spacing of the a-axis diffraction pattern, the (010) plane spacing based on a six-member ring was determined to be 0.21 nm.

Fig. 2
Fig. 2

Total-reflectance spectra of the carbon substrate (blue line) and the graphene nanostructure (red line) in the wavelength region from 400 nm to 10 μm. The inset shows the total-reflectance spectra of the vertically aligned carbon nanotube forest (green line) and the graphene nanostructure (red line) from 400 nm to 2 μm.

Fig. 3
Fig. 3

Blackbody radiation spectrum from the graphene nanostructure at a temperature of 2480 K. The upper inset displays the graphene nanostructure before (upper photograph) and after (lower photograph) heating to 2600 K. The lower inset shows the radiation spectrum of the graphene nanostructure at 1600 K.

Fig. 4
Fig. 4

Normal spectral emissivity of tungsten for temperatures of 1690 K (blue line), 2140 K (green line), and 2670 K (red line) obtained by dividing the emission spectrum of tungsten by that of the graphene nanoneedle blackbody. The inset shows the theoretically derived spectral emissivity curve of tungsten metal based on the Lorentz-Drude model with the phonon-scattering effect for temperatures from 1500 K to 3000 K (1500 K, blue line; 2500 K, green line; and 3000 K, red line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε 0 + j=0 k f j ω p 2 ( ω j 2 ω 2 )+i γ j ,

Metrics