Abstract

An 8 W continuous wave linearly-polarized single-frequency 1014.8 nm fiber amplifier working at room temperature is developed with commercial double-clad single-mode Yb-doped silica fiber. Re-absorption at the laser wavelength and amplified spontaneous emission at longer wavelength are managed by optimizing the amplifier design. The laser has a linewidth of ~24 kHz without noticeable broadening after amplification. Using two resonant cavity frequency doublers, 1.03 W laser at 507.4 nm and 75 mW laser at 253.7 nm are generated with 4 W 1014.8 nm laser. Both absorption and saturated absorption spectra of the 1S03P1 transition of atomic mercury are measured with the 253.7 nm laser.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
    [CrossRef] [PubMed]
  2. M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
    [CrossRef] [PubMed]
  3. G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
    [CrossRef] [PubMed]
  4. J. Paul, Y. Kaneda, T. L. Wang, C. Lytle, J. V. Moloney, and R. J. Jones, “Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser,” Opt. Lett.36(1), 61–63 (2011).
    [CrossRef] [PubMed]
  5. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32(8), 955–957 (2007).
    [CrossRef] [PubMed]
  6. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  7. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45(30), 7908–7911 (2006).
    [CrossRef] [PubMed]
  8. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
    [CrossRef]
  9. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
    [CrossRef]
  10. S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
    [CrossRef]
  11. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, “Ring-doped cladding-pumped single-mode three-level fiber laser,” Opt. Lett.23(5), 355–357 (1998).
    [CrossRef] [PubMed]
  12. W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles (Springer, 2008).

2012

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

2011

2010

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

2008

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

2007

2006

2004

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

1998

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Bize, S.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Chicireanu, R.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Clairon, A.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Clarkson, W. A.

Dawkins, S. T.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Derevianko, A.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Di Lieto, A.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

Fitzakerley, D. W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Fry, E. S.

Gabrielse, G.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

George, M. C.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Grzonka, D.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Hachisu, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Hanna, D. C.

Hänsch, T. W.

Hessels, E. A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Jones, R. J.

Kalra, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Kaneda, Y.

Katori, H.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Kirchner, M.

Kolthammer, W. S.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Le Coq, Y.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Lytle, C.

Magalhães, D. V.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Mandache, C.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Markert, F.

McConnell, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Minelly, J. D.

Miyagishi, K.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Moloney, J. V.

Müllers, A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Nilsson, J.

Oelert, W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Ovsiannikov, V. D.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Pal’chikov, V. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Paschotta, R.

Paul, J.

Petersen, M.

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

Porsev, S. G.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Richardson, D. J.

Richerme, P.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Scheid, M.

Sefzick, T.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Seifert, A.

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

Sinther, M.

Storry, C. H.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Takamoto, M.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Tropper, A. C.

Walther, T.

Walz, J.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32(8), 955–957 (2007).
[CrossRef] [PubMed]

Wang, J.

Wang, T. L.

Weel, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Zielinski, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am. B

Nat. Photonics

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S. G. Porsev and A. Derevianko, “Hyperfine quenching of the metastable 3P0,2 states in divalent atoms,” Phys. Rev. A69(4), 042506 (2004).
[CrossRef]

Phys. Rev. Lett.

H. Hachisu, K. Miyagishi, S. G. Porsev, A. Derevianko, V. D. Ovsiannikov, V. G. Pal’chikov, M. Takamoto, and H. Katori, “Trapping of neutral mercury atoms and prospects for optical lattice clocks,” Phys. Rev. Lett.100(5), 053001 (2008).
[CrossRef] [PubMed]

M. Petersen, R. Chicireanu, S. T. Dawkins, D. V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, and S. Bize, “Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury,” Phys. Rev. Lett.101(18), 183004 (2008).
[CrossRef] [PubMed]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D. W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, J. Walz, and ATRAP Collaboration, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108(11), 113002 (2012).
[CrossRef] [PubMed]

Other

W. Demtröder, Laser Spectroscopy: Vol. 1: Basic Principles (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic diagram of the experimental setup for the 1014.8 nm fiber amplifier, two resonant cavities for frequency doubling and quadrupling, and measurements of absorption and saturated absorption spectra. The inset at up-right corner shows the ASE filter’s transmission spectrum.

Fig. 2
Fig. 2

(a) Spectra of the amplifier’s direct output with gain fiber length of 1.45, 1.2, and 0.85 m, respectively, at 40 W pump and 30 mW seed. (b) The total output and the laser output with ASE being filtered out as functions of the fiber length.

Fig. 3
Fig. 3

(a) Laser output and forward ASE power as functions of the pump power. (b) The spectrum of laser output after the bandpass filter. The inset shows the corresponding spectrum of the direct output. The gain fiber is 1.05 m long, and the seed power is 100 mW.

Fig. 4
Fig. 4

Delayed self-heterodyne rf-spectra of the seed and amplified radiation (100 times averaged), and their Lorentzian fitting curves.

Fig. 5
Fig. 5

(a) The second harmonic (507.4 nm) power and conversion efficiency as functions of the fundamental infrared laser power. (b) The forth harmonic (253.7 nm) power and conversion efficiency as functions of the 507.4 nm laser.

Fig. 6
Fig. 6

(a) The absorption spectrum of the 1S03P1 transition of atomic mercury. (b) The saturated absorption spectroscopy of the 1S03P1 transition of atomic mercury. The Doppler background isn’t completely removed. Each peak is marked with the corresponding isotope(s).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G 1015 = G 1035 1.13 0.0375 A clad A core α p .

Metrics