Abstract

We report on the design, implementation, and performance of an x-ray monochromator with ultra-high energy resolution (ΔE/E ≃ 2.7 × 10−8) and high spectral efficiency using x rays with photon energies E ≃ 9.13 keV. The operating principle of the monochromator is based on the phenomenon of angular dispersion in Bragg back-diffraction. The optical scheme of the monochromator is a modification of a scheme reported earlier [Shvyd’ko et al., Phys. Rev. A 84, 053823 (2011)], where a collimator/wavelength selector Si crystal was replaced with a 100-μm-thick type IIa diamond crystal. This modification provides a very-small-energy bandwidth ΔE ≃ 0.25 meV, a 3-fold increase in the aperture of the accepted beam, a reduction in the cumulative angular dispersion rate of x rays emanating from the monochromator for better focusing on a sample, a sufficient angular acceptance matching the angular divergence of an undulator source (≈ 10 μrad), and an improved throughput due to low x-ray absorption in the thin diamond crystal. The measured spectral efficiency of the monochromator was ≈ 65% with an aperture of 0.3 × 1 mm2. The performance parameters of the monochromator are suitable for inelastic x-ray spectroscopy with an absolute energy resolution ΔE < 1 meV.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000).
    [CrossRef]
  2. H. Sinn, “Spectroscopy with meV energy resolution,” J. Phys.: Condens. Matter13, 7525–7537 (2001).
    [CrossRef]
  3. M. Krisch and F. Sette, Light Scattering in Solids IX (Springer, Berlin, 2007), vol. 108 of Topics in Applied Physics, chap. Inelastic X-Ray Scattering from Phonons, pp. 317–370.
  4. E. Gerdau and H. de Waard, eds., Nuclear Resonant Scattering of Synchrotron Radiation (Baltzer, 1999/2000). Special issues of the Hyperfine Interact., Vol. 123–125.
  5. R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications, vol. 208 of Springer Tracts in Modern Physics (Springer Verlag, Berlin-Heidelberg, 2004).
  6. H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
    [CrossRef]
  7. M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
    [CrossRef]
  8. S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010).
    [CrossRef] [PubMed]
  9. M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
    [CrossRef] [PubMed]
  10. Y. Shvyd’ko, X-Ray Optics – High-Energy-Resolution Applications, vol. 98 of Optical Sciences (Springer, Berlin Heidelberg New York, 2004).
  11. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
    [CrossRef]
  12. R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
    [CrossRef]
  13. T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
    [CrossRef]
  14. T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980).
    [CrossRef]
  15. S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
    [CrossRef]
  16. Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
    [CrossRef]
  17. Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
    [CrossRef]
  18. Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
    [CrossRef]
  19. Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
    [CrossRef]
  20. Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
    [CrossRef]
  21. Y. Shvyd’ko, “Enhanced x-ray angular dispersion and x-ray spectrographs with resolving power beyond 108,” Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII8502, 85020J (2012).
    [CrossRef]
  22. A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
    [CrossRef]
  23. V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
    [CrossRef]
  24. X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
    [CrossRef]
  25. R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
    [CrossRef]
  26. S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
    [CrossRef]
  27. H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012).
    [CrossRef]
  28. Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
    [CrossRef]
  29. J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
    [CrossRef]
  30. S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
    [CrossRef]
  31. D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
    [CrossRef]
  32. D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
    [CrossRef]
  33. D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).
  34. T. Toellner, “Monochromatization of synchrotron radiation for nuclear resonant scattering experiments,”Hyper-fine Interact.125, 3–28 (2000).
    [CrossRef]
  35. A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
    [CrossRef]
  36. T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
    [CrossRef]
  37. T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
    [CrossRef]
  38. S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
    [CrossRef] [PubMed]
  39. Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
    [CrossRef]

2013 (5)

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

2012 (5)

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012).
[CrossRef]

Y. Shvyd’ko, “Enhanced x-ray angular dispersion and x-ray spectrographs with resolving power beyond 108,” Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII8502, 85020J (2012).
[CrossRef]

2011 (6)

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

2010 (1)

S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010).
[CrossRef] [PubMed]

2009 (2)

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
[CrossRef]

2007 (1)

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

2006 (2)

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

2003 (1)

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

2002 (2)

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
[CrossRef] [PubMed]

2001 (2)

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

H. Sinn, “Spectroscopy with meV energy resolution,” J. Phys.: Condens. Matter13, 7525–7537 (2001).
[CrossRef]

2000 (3)

E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000).
[CrossRef]

T. Toellner, “Monochromatization of synchrotron radiation for nuclear resonant scattering experiments,”Hyper-fine Interact.125, 3–28 (2000).
[CrossRef]

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

1999 (1)

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

1996 (1)

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

1995 (1)

S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
[CrossRef]

1980 (1)

T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980).
[CrossRef]

Alatas, A.

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Alonso-Mori, R.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Alp, E. E.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Amann, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Asthalter, T.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Bandaru, J.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Barla, A.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Baron, A. Q. R.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Berg, W.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Bergmann, U.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Blank, V.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Boutet, S.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Brauer, S.

S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
[CrossRef]

Burkel, E.

E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000).
[CrossRef]

Burns, R. C.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Cai, Y. Q.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

Chollet, M.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Chumakov, A. I.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
[CrossRef]

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Coburn, D. S.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Colella, R.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Collins, S.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Connell, S. H.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Cunsolo, A.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

DeCarlo, F.

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Decker, F.-J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Denisov, V.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Deriy, A.

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Ding, Y.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Doyle, B. P.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Drakopoulos, M.

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

Dube, D.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Emma, P.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Feng, Y.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Fernandez, P.

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

Frisch, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Fritz, D.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Fritz, D. M.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Gerdau, E.

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Glownia, J. M.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Godfried, H. P.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Goetze, K.

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Goetze, K. A.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Gorges, B.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Halcoussis, C.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Haller, E. E.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Hansen, J. O.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Hastings, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Hastings, J. B.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Hiraoka, N.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Honnicke, M. G.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

Hoszowska, J.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Hrtwig, J.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Hu, M. Y.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Huang, X. R.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

Huang, Z.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Ishikawa, T.

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
[CrossRef] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

Kaminaga, U.

T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980).
[CrossRef]

Kartheuser, E.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Katsoudas, J.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Keister, J. W.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Khachatryan, R.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Kikuta, S.

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

Kim, J.

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

Kodituwakku, C. N.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Kohn, V. G.

V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
[CrossRef]

Krisch, M.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

M. Krisch and F. Sette, Light Scattering in Solids IX (Springer, Berlin, 2007), vol. 108 of Topics in Applied Physics, chap. Inelastic X-Ray Scattering from Phonons, pp. 317–370.

Krzywinski, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Kuetgens, U.

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

Kuzmin, N.V.

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Kuznetsov, M.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Lemke, H.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Lerche, M.

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Leupold, O.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Lindberg, R.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Loos, H.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Lucht, M.

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Lutman, A.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Macrander, A. T.

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

Maj, J.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Martel, K.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Martyushov, S.

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Masciovecchio, C.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Masiello, F.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Matsushita, T.

T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980).
[CrossRef]

Messerchmidt, M.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Mkhonza, L.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Montanez, P. A.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Mundboth, K.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

Nosukhin, S.

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Nuhn, H.-D.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Ozhogin, V. I.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Polyakov, S.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Ratner, D.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Rebak, M.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Ribois, J. F.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Robert, A.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Roberts, T.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Robinson, J.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Rodrigues, S.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Roehrig, C.

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Röhlsberger, R.

R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications, vol. 208 of Springer Tracts in Modern Physics (Springer Verlag, Berlin-Heidelberg, 2004).

Rommevaux, A.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Rüffer, R.

V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
[CrossRef]

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Ruocco, G.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Rüter, H. D.

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Rzepiela, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Said, A.

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

Said, A. H.

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

Samoylova, L.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Setshedi, R.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

Sette, F.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

M. Krisch and F. Sette, Light Scattering in Solids IX (Springer, Berlin, 2007), vol. 108 of Topics in Applied Physics, chap. Inelastic X-Ray Scattering from Phonons, pp. 317–370.

Shu, D.

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Shvyd’ko, Y.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Y. Shvyd’ko, “Enhanced x-ray angular dispersion and x-ray spectrographs with resolving power beyond 108,” Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII8502, 85020J (2012).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

Y. Shvyd’ko, X-Ray Optics – High-Energy-Resolution Applications, vol. 98 of Optical Sciences (Springer, Berlin Heidelberg New York, 2004).

Shvyd’ko, Y. V.

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010).
[CrossRef] [PubMed]

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Shvydko, Y.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Sikorski, M.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Sinn, H.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

H. Sinn, “Spectroscopy with meV energy resolution,” J. Phys.: Condens. Matter13, 7525–7537 (2001).
[CrossRef]

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Snigirev, A.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

Snigireva, I.

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

Song, S.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Souvorov, A.

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

Spampinati, S.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Srinivasan, V. N.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Stephenson, G. B.

S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
[CrossRef]

Stetsko, Y.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Stoupin, S.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010).
[CrossRef] [PubMed]

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Sturhahn, W.

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Sumiya, H.

H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012).
[CrossRef]

Sutter, J. P.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Sutton, M.

S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
[CrossRef]

Suvorov, A.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Tamasaku, K.

H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012).
[CrossRef]

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
[CrossRef] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

Terentiev, S.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

Terentyev, S.

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

Thiess, H.

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Toellner, T.

T. Toellner, “Monochromatization of synchrotron radiation for nuclear resonant scattering experiments,”Hyper-fine Interact.125, 3–28 (2000).
[CrossRef]

Toellner, T. S.

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

Trakhtenberg, E.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Tsuei, K. D.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Vaerenbergh, P. V.

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

van Driel, T. B.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Verbeni, R.

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

Villert, M. A.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Walz, D.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Welch, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Wille, H. C.

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

Wille, H.-C.

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Williams, G.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Wu, J.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Xiao, X.

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Yabashi, M.

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
[CrossRef] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

Zegenhagen, J.

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Zhao, J.

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

Zholents, A.

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Zhu, D.

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

AIP Conf. Proc. (1)

Y. V. Shvyd’ko, U. Kuetgens, H. D. Rüter, M. Lerche, A. Alatas, and J. Zhao, “Progress in the development of new optics for very high resolution inelastic x-ray scattering spectroscopy,” AIP Conf. Proc.879, 737–745 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

A. I. Chumakov, R. Rüffer, O. Leupold, A. Barla, H. Thiess, T. Asthalter, B. P. Doyle, A. Snigirev, and A. Q. R. Baron, “High-energy-resolution x-ray optics with refractive collimators,” Appl. Phys. Lett.77, 31–33 (2000).
[CrossRef]

Diamond Relat. Mater. (2)

S. Polyakov, V. Denisov, N.V. Kuzmin, M. Kuznetsov, S. Martyushov, S. Nosukhin, S. Terentiev, and V. Blank, “Characterization of top-quality type IIa synthetic diamonds for new x-ray optics,” Diamond Relat. Mater.20, 726–728 (2011).
[CrossRef]

S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, and J. Katsoudas, “Diamond crystal optics for self-seeding of hard X-rays in X-ray free-electron lasers,” Diamond Relat. Mater.33, 1–4 (2013).
[CrossRef]

Hyper-fine Interact. (1)

T. Toellner, “Monochromatization of synchrotron radiation for nuclear resonant scattering experiments,”Hyper-fine Interact.125, 3–28 (2000).
[CrossRef]

J. Appl. Cryst. (1)

X. R. Huang, A. T. Macrander, M. G. Honnicke, Y. Q. Cai, and P. Fernandez, “Dispersive spread of virtual sources by asymmetric X-ray monochromators,” J. Appl. Cryst.45, 255262 (2012).
[CrossRef]

J. Appl. Crystallogr. (1)

T. Matsushita and U. Kaminaga, “A systematic method of estimating the performance of X-ray optical systems for synchrotron radiation. II. Treatment in position-angle–wavelength space,” J. Appl. Crystallogr.13, 472–478 (1980).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

A. Souvorov, M. Drakopoulos, I. Snigireva, and A. Snigirev, “Asymmetrically cut crystals as optical elements for coherent x-ray beam conditioning,” J. Phys. D: Appl. Phys.32, A184A192 (1999).
[CrossRef]

J. Phys.: Condens. Matter (2)

R. C. Burns, A. I. Chumakov, S. H. Connell, D. Dube, H. P. Godfried, J. O. Hansen, J. Hrtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, and P. V. Vaerenbergh, “HPHT growth and x-ray characterization of high-quality type IIa diamond,” J. Phys.: Condens. Matter21, 364224 (2009).
[CrossRef]

H. Sinn, “Spectroscopy with meV energy resolution,” J. Phys.: Condens. Matter13, 7525–7537 (2001).
[CrossRef]

J. Phys.: Conf. Ser. (1)

Y. Q. Cai, D. S. Coburn, A. Cunsolo, J. W. Keister, M. G. Honnicke, X. R. Huang, C. N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K. D. Tsuei, and H. C. Wille, “The ultrahigh resolution IXS beamline of NSLS-II: Recent advances and scientific opportunities,” J. Phys.: Conf. Ser.425, 202001 (2013).
[CrossRef]

J. Phys: Conf. Ser. (1)

D. Shu, S. Stoupin, R. Khachatryan, K. A. Goetze, T. Roberts, K. Mundboth, S. Collins, and Y. Shvyd’ko, “Precision mechanical design of an ultrahigh-resolution inelastic x-ray scattering spectrometer system with CDFDW optics at the APS,” J. Phys: Conf. Ser.425, 052031 (2013).
[CrossRef]

J. Synchrotron Rad. (6)

V. G. Kohn, A. I. Chumakov, and R. Rüffer, “Wave theory of focusing monochromator of synchrotron radiation,” J. Synchrotron Rad.16, 635–641 (2009).
[CrossRef]

S. Brauer, G. B. Stephenson, and M. Sutton, “Perfect Crystals in the Asymmetric Bragg Geometry as Optical Elements for Coherent X-ray Beams,” J. Synchrotron Rad.2, 163–173 (1995).
[CrossRef]

R. Verbeni, F. Sette, M. Krisch, U. Bergmann, B. Gorges, C. Halcoussis, K. Martel, C. Masciovecchio, J. F. Ribois, G. Ruocco, and H. Sinn, “X-ray monochromator with 2 × 10−8 energy resolution,” J. Synchrotron Rad.3, 62–64 (1996).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

T. S. Toellner, A. Alatas, A. Said, D. Shu, W. Sturhahn, and J. Zhao, “A cryogenically stabilized meV-monochromator for hard X-rays,” J. Synchrotron Rad.13, 211–215 (2006).
[CrossRef]

T. S. Toellner, A. Alatas, and A. H. Said, “Six-reflection meV-monochromator for synchrotron radiation,” J. Synchrotron Rad.18, 605–611 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Sumiya and K. Tamasaku, “Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature,”Jpn. J. Appl. Phys.51, 090102 (2012).
[CrossRef]

Nat. Photonics (2)

Y. V. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev, “Near 100% Bragg reflectivity of X-rays,” Nat. Photonics5, 539 (2011).
[CrossRef]

J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Y. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentiev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, and D. Zhu, “Demonstration of self-seeding in a hard-X-ray free-electron laser,” Nat. Photonics6, 693–698 (2012).
[CrossRef]

Phys. Rev. A (2)

Y. Shvyd’ko, S. Stoupin, D. Shu, and R. Khachatryan, “Using angular dispersion and anomalous transmission to shape ultramonochromatic x rays,” Phys. Rev. A84, 053823 (2011).
[CrossRef]

Y. Shvyd’ko, S. Stoupin, K. Mundboth, and J. Kim, “Hard-x-ray spectrographs with resolution beyond 100 μev,” Phys. Rev. A87, 043835 (2013).
[CrossRef]

Phys. Rev. B (1)

M. Y. Hu, H. Sinn, A. Alatas, E. E. Alp, W. Sturhahn, H.-C. Wille, Y. V. Shvyd’ko, J. P. Sutter, J. Bandaru, E. E. Haller, V. I. Ozhogin, S. Rodrigues, R. Colella, E. Kartheuser, and M. A. Villert, “The effect of isotopic composition on the lattice parameter of germanium,” Phys. Rev. B67, 113306 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

S. Stoupin and Y. V. Shvyd’ko, “Thermal expansion of diamond at low temperatures,” Phys. Rev. Lett.104, 085901 (2010).
[CrossRef] [PubMed]

M. Yabashi, K. Tamasaku, and T. Ishikawa, “Measurement of x-ray pulse widths by intensity interferometry,” Phys. Rev. Lett.88, 244801 (2002).
[CrossRef] [PubMed]

Y. V. Shvyd’ko, M. Lerche, U. Kuetgens, H. D. Rüter, A. Alatas, and J. Zhao, “X-ray bragg diffraction in asymmetric backscattering geometry,” Phys. Rev. Lett.97, 235502 (2006).
[CrossRef]

H.-C. Wille, Y. V. Shvyd’ko, E. Gerdau, M. Lerche, M. Lucht, H. D. Rüter, and J. Zegenhagen, “Anomalous isotopic effect on the lattice constant of silicon,” Phys. Rev. Lett.89, 285901 (2002).
[CrossRef]

Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation (1)

Y. Feng, R. Alonso-Mori, V. Blank, S. Boutet, M. Chollet, T. B. van Driel, D. M. Fritz, J. M. Glownia, J. B. Hastings, H. Lemke, M. Messerchmidt, P. A. Montanez, A. Robert, J. Robinson, L. Samoylova, Y. Shvydko, M. Sikorski, H. Sinn, S. Song, V. N. Srinivasan, S. Stoupin, S. Terentiev, G. Williams, and D. Zhu, “Recent development of thin diamond crystals for x-ray FEL beam-sharing,” Proc. SPIE, Advances in X-ray Free-Electron Lasers II: Instrumentation8778, 87780B (2013).
[CrossRef]

Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII (1)

Y. Shvyd’ko, “Enhanced x-ray angular dispersion and x-ray spectrographs with resolving power beyond 108,” Proc. SPIE, Advances in X-Ray/EUV Optics and Components VII8502, 85020J (2012).
[CrossRef]

Proc. SPIE: Optomechanics (1)

D. Shu, S. Stoupin, R. Khachatryan, K. Goetze, T. Roberts, and Y. Shvyd’ko, “Optomechanical design of ultrahigh-resolution monochromator and analyzer for inelastic x-ray scattering spectrometer at the Advanced Photon Source,”Proc. SPIE: Optomechanics8125, 812507 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

E. Burkel, “Phonon spectroscopy by inelastic x-ray scattering,” Rep. Prog. Phys.63, 171 (2000).
[CrossRef]

Rev. Sci. Instrum. (2)

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “An x-ray monochromator with an energy resolution of 8 × 10−9at 14.4 keV,” Rev. Sci. Instrum.72, 4080 (2001).
[CrossRef]

S. Stoupin, Y. Shvyd’ko, D. Shu, R. Khachatryan, X. Xiao, F. DeCarlo, K. Goetze, T. Roberts, C. Roehrig, and A. Deriy, “Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals,” Rev. Sci. Instrum.83, 023105 (2012).
[CrossRef] [PubMed]

Other (5)

D. Shu, Y. Shvydko, S. Stoupin, R. Khachatryan, K. Goetze, and T. Roberts, “Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic x-ray scattering instrument,”13551788, U.S. patent pending (2012).

Y. Shvyd’ko, X-Ray Optics – High-Energy-Resolution Applications, vol. 98 of Optical Sciences (Springer, Berlin Heidelberg New York, 2004).

M. Krisch and F. Sette, Light Scattering in Solids IX (Springer, Berlin, 2007), vol. 108 of Topics in Applied Physics, chap. Inelastic X-Ray Scattering from Phonons, pp. 317–370.

E. Gerdau and H. de Waard, eds., Nuclear Resonant Scattering of Synchrotron Radiation (Baltzer, 1999/2000). Special issues of the Hyperfine Interact., Vol. 123–125.

R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Basic Principles, Methodology and Applications, vol. 208 of Springer Tracts in Modern Physics (Springer Verlag, Berlin-Heidelberg, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme of the previously implemented CDFDW optics [18, 19]. The first crystal (CFW) plays the role of a collimator (C) upon the first asymmetric Bragg reflection, an anomalous transmission filter (F), and a wavelength selector (W). After the first reflection the collimated x-ray beam is incident on a strongly asymmetric second crystal D1. The xray beam reflected from D1 enters the condition for anomalously high transmission through the CFW crystal. The transmitted beam is further dispersed by a second dispersive element D2 with doubled angular dispersion rate and subsequently reflected from the CFW crystal, now performing the function of the wavelength selector. The effect of angular dispersion at the exit of the CDFDW optics is illustrated by an exaggerated divergent fan where photons of different energies propagate at different reflection angles. Only angular dispersion of the exit beam is shown for clarity.

Fig. 2
Fig. 2

(a) Optomechanical scheme of the monochromator (see text for details); (b) a three-dimensional representation of the path of the x-ray beam through the monochromator.

Fig. 3
Fig. 3

Dynamical theory calculations of the spectral distribution of x rays after each successive reflection indicated by number and color, from the crystals of the angular dispersive monochromator. Black dashed line shows a Gaussian distribution of the same full width at half maximum. The insert shows the same distributions on the linear scale in the vicinity of the Si 008 backscattering energy E0.

Fig. 4
Fig. 4

(a) Side and top view sketch of the desired crystal showing the requirements on diamond (133) crystal geometry and orientation. The arrows and Miller indexes denote reference reciprocal vectors. The miscut angle α = 1.5° from the (001) crystal plane yields the desired asymmetry angle ηC = 48° for the working diamond 133 Bragg reflection. (b) A photograph of the diamond crystal with dimensions scale given in mm. The dashed box represents the maximum size of a footprint of an x-ray beam in the working configuration of the monochromator. (c) X-ray Lang topograph of the diamond crystal obtained using C 220 reflection in transmission (Laue) geometry. Crystal orientation in (b) and (c) is the same as in (a) (top view).

Fig. 5
Fig. 5

Scheme of the experimental setup detailing the measurement of the spectral resolution function of the CDDW monochromator using a high-energy-resolution analyzer (CDFDW+W). The scheme shows the setup in the horizontal scattering plane plane. A spatial separation of the eV beam transmitted through the CW diamond crystal (red) and of the monochromatized sub-meV beam (green) is accomplished using angular offsets in χ̃D1 and χ̃D2. The eV beam is blocked by slits while the sub-meV beam is transmitted through the high-energy-resolution analyzer and measured using a detector (Det).

Fig. 6
Fig. 6

Main tuning curves of the CDDW monochromator (filled circles and solid lines), representing angular dependencies of reflectivity of x rays: (a) from the CW crystal, as a function of θ̃C; (b) from the CW crystal, from the D1 crystal, and transmission through the CW crystal, as a function of Θ̃D1 ; (c) from all crystals of the CDDW monochromator (i.e., after all five interactions) as a function of Θ̃D2 ; (d) from all crystals of the CDDW monochromator as a function of θ̃. The last curve represents the angular acceptance of the CDDW monochromator for the eV beam. The dashed lines show results of numerical calculations using the dynamical theory of x-ray diffraction in the two-beam approximation. The insets in each subfigure show schematically the directions of crystal rotations in the angular scan and the path of the x rays to the detector (det). To avoid intensity losses due to proximity to exact backscattering, an angular offset δΘ̃D1 ≈ 200 μrad was applied as shown in (b) by the green-filled arrow. The gold arrow in the inset of (b) shows the x-ray beam reflected consecutively from the D1 crystal in backscattering and backwards from the diamond crystal.

Fig. 7
Fig. 7

Energy tuning curve of the CDDW monochromator (solid circles and lines) performed by simultaneous variation of angles Θ̃D1 and Θ̃D2 (as shown in the inset) The dashed line shows the result of numerical calculations using dynamical theory of x-ray diffraction in the two-beam approximation.

Fig. 8
Fig. 8

(a) Scheme of the experimental setup in the dispersion (vertical) plane. (b) Spectral resolution function of the CDDW monochromator against CDFDW +W analyzer. The experimental spectral resolution function is shown by filled circles; the black solid line shows spectral resolution function calculated using the dynamical theory of x-ray diffraction. Other functions with the same FWHM are shown for comparison: Gaussian (dashed line) and Lorentzian (dash-dotted line).

Tables (2)

Tables Icon

Table 1 Elements of the CDDW optics and their crystal and Bragg reflection parameters as used in all dynamical theory calculations and in the experiment: h,k,l, Miller indices of the Bragg diffraction vector H; ηH, asymmetry angle; θH, glancing angle of incidence; bH = −sin(θH ± ηH)/sin(θHηH), asymmetry ratio; Δ E H ( s ) and Δ θ H s, Bragg’s reflection intrinsic spectral width and angular acceptance in symmetric scattering geometry, respectively; and d, crystal thickness. X-ray photon energy E = 9.1315 keV.

Tables Icon

Table 2 Design and measured parameters of the CDDW monochromator: ΔEM, FWHM of the spectral resolution function; δEM, accessible energy range (FWHM) provided by angular tunability (Eq. (5)); ΔθM, angular acceptance; V, maximum (theory) and nominal (experiment) vertical acceptance; εM, spectral efficiency [Eq. (6)]; and IM, delivered photon flux at the 30-ID undulator beamline with the incident beam cross section of 0.3 × 1.0 mm2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ E E = Δ θ C + Δ θ W 4 tan η D ,
s = L b W sin ( θ C + η C ) 0.46 mm ,
Δ χ ˜ D n = 1 4 Δ χ cos 2 θ C
sin θ D n * sin θ D n cos Δ χ ˜ D n .
δ Θ = δ E E 0 tan η D ,
ε M = I M I X Δ E X Δ E M .

Metrics