Abstract

Gold nanoparticles deposited on self-organized nano-ripple quartz substrates have been studied by spectroscopic Mueller matrix ellipsometry. The surface was found to have biaxial anisotropic optical properties. For electric field components normal to the ripples the periodic and disconnected nature of the in plane nanowires gives rise to an optical response dominated by the localized plasmon resonance. In the direction parallel to the ripples the gold nanoparticles are aligned closely leading to localized plasmon resonances in the infrared. As Au was deposited at an angle oblique to the surface normal, the gold nanoparticles were formed on the side of the ripples facing the incoming evaporation flux. This makes the gold particles slightly inclined, correspondingly the principal coordinate system of the biaxial dielectric tensor results tilted. The anisotropic plasmonic optical response results in a strong polarizing effect, making it suitable as a plasmonic nanowired grid polarizer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
    [CrossRef] [PubMed]
  2. P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  4. D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
    [CrossRef] [PubMed]
  5. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
    [CrossRef] [PubMed]
  6. A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
    [CrossRef]
  7. V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
    [CrossRef]
  8. T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
    [CrossRef]
  9. T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
    [CrossRef]
  10. T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19, 2014–2028 (2011).
    [CrossRef] [PubMed]
  11. S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
    [CrossRef]
  12. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
    [CrossRef]
  13. A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
    [CrossRef]
  14. E. Hecht, Optics (Addison Wesley, 2002).
  15. A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
    [CrossRef]
  16. L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
    [CrossRef]
  17. A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
    [CrossRef]
  18. L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
    [CrossRef]
  19. A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
    [CrossRef]
  20. D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
    [CrossRef]
  21. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A 6, 2390–2395 (1988).
    [CrossRef]
  22. W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
    [CrossRef]
  23. U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
    [CrossRef]
  24. I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
    [CrossRef]
  25. M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films 313–314, 323–332 (1998).
    [CrossRef]
  26. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films.” Opt. Lett. 34, 992–994 (2009).
    [CrossRef] [PubMed]
  27. R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).
  28. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
    [CrossRef]
  29. T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
    [CrossRef]
  30. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039 (1978).
    [CrossRef]
  31. J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
    [CrossRef]
  32. G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382 (1984).
    [CrossRef]
  33. R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419, 124–136 (2002).
    [CrossRef]
  34. I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
    [CrossRef]
  35. S. A. Mayer, Plasmonics, Fundamentals and Applications (Springer, 2007).
  36. D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
    [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).
  38. J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).
  39. M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
    [CrossRef]
  40. A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
    [CrossRef]
  41. S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A. 13, 1106–1113 (1996).
    [CrossRef]

2013 (1)

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

2012 (1)

D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
[CrossRef]

2011 (8)

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19, 2014–2028 (2011).
[CrossRef] [PubMed]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

2009 (3)

2008 (1)

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

2007 (3)

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[CrossRef]

2005 (2)

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

2003 (2)

D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
[CrossRef]

2002 (1)

R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419, 124–136 (2002).
[CrossRef]

2001 (1)

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
[CrossRef]

2000 (3)

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

1998 (1)

M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films 313–314, 323–332 (1998).
[CrossRef]

1996 (1)

S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A. 13, 1106–1113 (1996).
[CrossRef]

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

1984 (1)

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382 (1984).
[CrossRef]

1980 (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
[CrossRef]

1978 (1)

1974 (1)

T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Aas, L. M. S.

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

Anghinolfi, L.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

Arwin, H.

T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
[CrossRef]

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19, 2014–2028 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Azzam, R.

R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).

Babonneau, D.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Bashara, N.

R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).

Belardini, A.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

Bertolotti, M.

Bhattacharyya, S.

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

Bisio, F.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

Booso, B.

Boragno, C.

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
[CrossRef]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Buatier de Mongeot, F.

D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
[CrossRef]

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
[CrossRef]

Bungay, C. L.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Buzio, R.

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

Camelio, S.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Canepa, M.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

Centini, M.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

Chan, W. L.

W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[CrossRef]

Chason, E.

W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[CrossRef]

Chiappe, D.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

Chipman, R.

S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A. 13, 1106–1113 (1996).
[CrossRef]

Comoretto, D.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

Craig, M.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

de Mongeot, F. B.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

De Sousa Meneses, D.

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

de Vries, A. J.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Drauschke, A.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
[CrossRef]

Echegut, P.

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

Facsko, S.

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19, 2014–2028 (2011).
[CrossRef] [PubMed]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

Fazio, E.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

Firpo, G.

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

Foldyna, M.

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

Giordano, M.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

Granqvist, C. G.

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382 (1984).
[CrossRef]

Gruener, G.

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Haslbeck, S.

F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
[CrossRef] [PubMed]

Hauge, P. S.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Herman, I.

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Herzinger, J. N.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Hilfiker, J.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Hofmann, T.

Honkanen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Johs, B. D.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Jupille, J.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

Keller, A.

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

Kettunen, V.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Kildemo, M.

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

Kinbara, a.

T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Kooij, E. S.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Kuittinen, M.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Lantiat, D.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Larciprete, M. C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

Lautanen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Lazzari, R.

R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419, 124–136 (2002).
[CrossRef]

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

Letnes, P. A.

P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

Lu, S.

S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A. 13, 1106–1113 (1996).
[CrossRef]

Malki, M.

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

Martella, C.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

Massabò, D.

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

Mattera, L.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

Mayer, S. A.

S. A. Mayer, Plasmonics, Fundamentals and Applications (Springer, 2007).

Mewe, A.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Mills, D. L.

P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

Moroni, R.

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

Mücklich, A.

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

Muller, R. H.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
[CrossRef]

Nerbø, I.

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

Nerbø, I. S.

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

Niklasson, G. A.

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382 (1984).
[CrossRef]

Oates, T.

T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
[CrossRef]

Oates, T. W. H.

T. W. H. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express 19, 2014–2028 (2011).
[CrossRef] [PubMed]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

Pailloux, F.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).

Poelsema, B.

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Ranjan, M.

Robbiano, V.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

Roux, S.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

Roy, S. L.

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

Sancho-Parramon, J.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

Sarangan, A.

Schmidt, D.

Schnabel, B.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
[CrossRef]

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Schubert, E.

Schubert, M.

Schurig, D.

D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Sibilia, C.

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

Simonot, L.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Simonsen, I.

P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419, 124–136 (2002).
[CrossRef]

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

Smith, C. G.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
[CrossRef]

Smith, D.

D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

Søndergård, E.

I. Nerbø, S. L. Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 571–575 (2011).
[CrossRef]

Spanier, J.

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Stasio, F. D.

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

Stievano, L.

F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
[CrossRef] [PubMed]

Sudoh, A.

Synowicki, R. A.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Takahashi, H.

Toma, A.

D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, A. Toma, D. Chiappe, and F. Buatier de Mongeot, “Tailored second harmonic generation from self-organized metal nano-wires arrays.” Opt. Express 17, 3603–3609 (2009).
[CrossRef] [PubMed]

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

Turunen, J.

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Valbusa, U.

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
[CrossRef]

Wagner, F.

F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
[CrossRef] [PubMed]

Woollam, J.

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Wormeester, H.

T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
[CrossRef]

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

Wyrowski, F.

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
[CrossRef]

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am. 68, 1039 (1978).
[CrossRef]

T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Zorc, H.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

Adv. Opt. Mat. (1)

V. Robbiano, M. Giordano, C. Martella, F. D. Stasio, D. Chiappe, F. B. de Mongeot, and D. Comoretto, “Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals,” Adv. Opt. Mat. 1, 389–396 (2013).
[CrossRef]

Appl. Phys. B. (1)

M. Honkanen, V. Kettunen, M. Kuittinen, J. Lautanen, J. Turunen, B. Schnabel, and F. Wyrowski, “Inverse metal-stripe polarizers,” Appl. Phys. B. 68, 81–85 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

A. Toma, D. Chiappe, D. Massabò, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett. 93, 163104 (2008).
[CrossRef]

J. Appl. Phys. (3)

A. J. de Vries, E. S. Kooij, H. Wormeester, A. Mewe, and B. Poelsema, “Ellipsometric study of percolation in electroless deposited silver films,” J. Appl. Phys. 101, 053703 (2007).
[CrossRef]

W. L. Chan and E. Chason, “Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering,” J. Appl. Phys. 101, 121301 (2007).
[CrossRef]

G. A. Niklasson and C. G. Granqvist, “Optical properties and solar selectivity of coevaporated Co-Al2O3 composite films,” J. Appl. Phys. 55, 3382 (1984).
[CrossRef]

J. Non-Cryst. Solids (1)

D. De Sousa Meneses, G. Gruener, M. Malki, and P. Echegut, “Causal Voigt profile for modeling reflectivity spectra of glasses,” J. Non-Cryst. Solids 351, 124–129 (2005).
[CrossRef]

J. Opt. A. (1)

A. Drauschke, B. Schnabel, and F. Wyrowski, “Comment on the inverse polarization effect in metal-stripe polarizers,” J. Opt. A. 3, 67–71 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A. (1)

S. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A. 13, 1106–1113 (1996).
[CrossRef]

J. Phys. Chem. C (1)

L. Anghinolfi, R. Moroni, L. Mattera, M. Canepa, and F. Bisio, “Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response,” J. Phys. Chem. C 115, 14036–14043 (2011).
[CrossRef]

J. Vac Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Mater. Sci. Eng. C (1)

U. Valbusa, C. Boragno, and F. Buatier de Mongeot, “Nanostructuring by ion beam,” Mater. Sci. Eng. C 23, 201–209 (2003).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices.” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nature (1)

F. Wagner, S. Haslbeck, and L. Stievano, “Before striking gold in gold-ruby glass,” Nature 407, 691–692 (2000).
[CrossRef] [PubMed]

Nucl. Instrum. Methods (1)

A. Toma, F. Buatier de Mongeot, R. Buzio, G. Firpo, S. Bhattacharyya, C. Boragno, and U. Valbusa, “Ion beam erosion of amorphous materials: evolution of surface morphology,” Nucl. Instrum. Methods 230, 551–554 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (5)

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

D. Chiappe, A. Toma, and F. Buatier de Mongeot, “Tailoring resisitivity anisotropy of nanorippled metal films: Electrons surfing on gold waves,” Phys. Rev. B 86, 045414 (2012).
[CrossRef]

A. Toma, D. Chiappe, C. Boragno, and F. Buatier de Mongeot, “Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality,” Phys. Rev. B 81, 165436(2010).
[CrossRef]

P. A. Letnes, I. Simonsen, and D. L. Mills, “Substrate influence on the plasmonic response of clusters of spherical nanoparticles,” Phys. Rev. B 83, 075426 (2011).
[CrossRef]

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B 61, 7722–7733 (2000).
[CrossRef]

Phys. Rev. B. (1)

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B. 80, 1–10 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

D. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev. Lett. 90, 077405 (2003).
[CrossRef] [PubMed]

A. Belardini, M. C. Larciprete, M. Centini, E. Fazio, C. Sibilia, D. Chiappe, C. Martella, A. Toma, M. Giordano, and F. Buatier de Mongeot, “Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires,” Phys. Rev. Lett. 107, 257401 (2011).
[CrossRef]

Plasmonics (1)

T. W. H. Oates, A. Keller, S. Facsko, and A. Mücklich, “Aligned Silver Nanoparticles on Rippled Silicon Templates Exhibiting Anisotropic Plasmon Absorption,” Plasmonics 2, 47–50 (2007).
[CrossRef]

Proc. SPIE (2)

L. M. S. Aas, I. S. Nerbø, M. Kildemo, D. Chiappe, C. Martella, and F. Buatier de Mongeot, “Mueller matrix imaging of plasmonic polarizers on nanopatterned surface,” Proc. SPIE 8082, 80822W (2011).
[CrossRef]

J. Woollam, B. D. Johs, J. N. Herzinger, M. Craig, J. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” Proc. SPIE CR72, 3–28 (1999).

Prog. Surf. Sci. (1)

T. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci. 86, 328–376 (2011).
[CrossRef]

Surf. Sci. (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96, 81–107 (1980).
[CrossRef]

Thin Solid Films (4)

T. Yamaguchi, S. Yoshida, and a. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

R. Lazzari and I. Simonsen, “GranFilm: a software for calculating thin-layer dielectric properties and Fresnel coefficients,” Thin Solid Films 419, 124–136 (2002).
[CrossRef]

M. Schubert, “Generalized ellipsometry and complex optical systems,” Thin Solid Films 313–314, 323–332 (1998).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films—a spectroscopic ellipsometry study,” Thin Solid Films 519, 2946–2950 (2011).
[CrossRef]

Other (4)

E. Hecht, Optics (Addison Wesley, 2002).

R. Azzam and N. Bashara, Ellipsometry and Polarized light (North-Holland, 1977).

S. A. Mayer, Plasmonics, Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) shows the AFM image of the glass substrate after patterning but prior to deposition of Au. (b) shows the AFM image of the surface after deposition of Au.

Fig. 2
Fig. 2

The gold nanoparticles are preferentially deposited along the ridges of the quartz nanoripples, where nucleation and agglomeration take place. An optical model was based on a biaxial cartesian coordinate system, where the optical axes are indicated to be aligned along the nanowires (x–axis), along the slope of the ripples, and normal to the ripple edge. The tilt angle θ is indicated as the local slope. The thickness of the effective layer is h.

Fig. 3
Fig. 3

A polar color map of the experimental spectroscopic Mueller matrix measured at 50° incidence. The radius correspond to the wavelength from 210 nm (5.9 eV) at the inner radius circle to 1700 nm (0.73 eV) at the outer edge. The Mueller matrix is normalized to the m11 element. The color bar shows the scale at each element.

Fig. 4
Fig. 4

The spectroscopic Mueller matrix elements m12, m33 and m34 for the incidence angles 50° and 70° and incidence planes 0° and 90°. The solid colored lines show the experimental data, while the dashed black lines show the simulated data.

Fig. 5
Fig. 5

The complex dielectric tensor parametrized using Eq. (9) and Table 1. The dielectric function of Au [37] is shown for comparison.

Fig. 6
Fig. 6

The spectroscopic Mueller matrix at 50° incidence for six incidence planes (0°, 45°, 135°, 180°, 225° and 270°). The solid colored curves show experimental data, while the dashed black curves show the simulated data.

Fig. 7
Fig. 7

Histogram showing the distribution of slope for the AFM image in Fig. 1(a).

Fig. 8
Fig. 8

Spectroscopic Mueller matrix measurement in transmission. The solid line indicates the measurement, while the dashed line is the simulated data using the model in Table 1

Fig. 9
Fig. 9

Figure (a) shows the retardance (δ) and the diattenuation of the transmission Mueller matrix, while Fig. (b) shows the orientation of the corresponding slow axis and transmission axis.

Tables (1)

Tables Icon

Table 1 The parametrization of the dielectric tensor of the film. The amplitudes, broadening and energy corresponds to the parameters of a Lorentzian, Drude and Gaussian line shapes in Eq. (5), Eq. (6) and Eq. (7). The blank fields indicate that the oscillator was not included for the corresponding axis.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ E p E s ] refl = [ r p p r p s r s p r s s ] [ E p E s ] inc
S = [ s 0 s 1 s 2 s 3 ] = [ I p + I s I p I s I + 45 ° I 45 ° I R I L ] = [ E p 0 ( t ) 2 + E s 0 ( t ) 2 E p 0 ( t ) 2 E s 0 ( t ) 2 2 E p 0 ( t ) E s 0 ( t ) cos δ ( t ) 2 E p 0 ( t ) E s 0 ( t ) sin δ ( t ) ] .
M iso = [ 1 cos 2 Ψ 0 0 cos 2 Ψ 1 0 0 0 0 sin 2 Ψ cos Δ sin 2 Ψ sin Δ 0 0 sin 2 Ψ sin Δ sin 2 Ψ cos Δ ] ,
M aniso = [ 1 2 ( | r p p | 2 + | r s p | 2 + | r p s | 2 + | r s s | 2 ) 1 2 ( | r p p | 2 + | r s p | 2 | r p s | 2 | r s s | 2 ) 1 2 ( | r p p | 2 | r s p | 2 + | r p s | 2 | r s s | 2 ) 1 2 ( | r p p | 2 | r s p | 2 | r p s | 2 + | r s s | 2 ) Re ( r p p r s p * + r p s r s s * ) Re ( r p p r s p * r s p r s s * ) Im ( r p p r s p * + r p s r s s * ) Im ( r p p r s p * r p s r s s * ) Re ( r p p r p s * + r s p r s s * ) Im ( r p p r p s * + r s p r s s * ) Re ( r p p r p s * r s p r s s * ) Im ( r p p r p s * r s p r s s * ) Re ( r p p r s s * + r p s r s p * ) Im ( r p p r s s * r p s r s p * ) Im ( r p p r s s * + r p s r s p * ) Re ( r p p r s s * r p s r s p * ) ] .
ε ˜ Lorentz ( E ) = A k E k 2 E 2 i γ k E ,
ε ˜ D ( E ) = E p 2 E 2 + i γ k E ,
ε 2 Gauss = A k [ exp { ( E E k γ k ) 2 } + exp { ( E + E k γ k ) 2 } ] ,
ε 1 Gauss = A k [ Γ ( E E k γ k ) + Γ ( E + E k γ k ) ] .
ε ˜ Total q ( E ) = ε q + ε Loc q + ε IB q + ε D q

Metrics