Abstract

A twin-resonance-coupling phenomenon and the sensing characteristics of a selectively fluid-filled microstructured optical fiber (SFMOF) are proposed and demonstrated. The SFMOF is realized by selectively infiltrating refractive index fluid into a single air hole located at the second ring near the core of the MOF. Twin-resonance dips are observed in the transmission spectrum. Theoretical and experimental investigations reveal that the twin-resonance dips both result from the coupling between LP01C silica core mode and LP01L liquid rod mode. Their sensitivities strongly depend on the dispersion curves of the silica and fluid material. Sensitivities of 290 nm/°C (739,796 nm/RIU) and 591.84 nm/N (701.2 pm/µɛ) are achieved, which are the highest for a SFMOF-based device to date, to our best knowledge. Furthermore, the twin-resonance dips appear to shift in the opposite directions with changes in temperature or axial strain, providing a method to achieve two- or multi-parameter measurement in such a compact structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Han, Y. G. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, “Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.35(12), 2061–2063 (2010).
    [CrossRef] [PubMed]
  2. Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
    [CrossRef]
  3. Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett.37(22), 4747–4749 (2012).
    [CrossRef] [PubMed]
  4. W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett.36(16), 3296–3298 (2011).
    [CrossRef] [PubMed]
  5. X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
    [CrossRef]
  6. T. Han, Y. G. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, and W. Zhou, “Unique characteristics of a selective-filling photonic crystal fiber Sagnac interferometer and its application as high sensitivity sensor,” Opt. Express21(1), 122–128 (2013).
    [CrossRef] [PubMed]
  7. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  8. H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett.38(7), 1071–1073 (2013).
    [CrossRef] [PubMed]
  9. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1208 (1965).
    [CrossRef]
  10. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt.22(19), 3070–3072 (1983).
    [CrossRef] [PubMed]
  11. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, A. S. Sedra, ed. (Oxford University, 2007).
  12. B. Kuhlmey, B. Eggleton, and D. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol.27(11), 1617–1630 (2009).
    [CrossRef]

2013 (2)

2012 (2)

Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett.37(22), 4747–4749 (2012).
[CrossRef] [PubMed]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

2011 (2)

W. Qian, C. L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, “Partially liquid-filled hollow-core photonic crystal fiber polarizer,” Opt. Lett.36(16), 3296–3298 (2011).
[CrossRef] [PubMed]

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
[CrossRef]

2010 (1)

2009 (2)

1983 (1)

1965 (1)

Chan, C. C.

Chen, J.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Cooper, P. R.

Eggleton, B.

Eggleton, B. J.

Gao, S.

Geng, P.

Guo, J.

Han, T.

Jin, W.

Kuhlmey, B.

Kuhlmey, B. T.

Li, Z.

Liang, H.

Liao, C.

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
[CrossRef]

Liao, C. R.

Liu, B.

Liu, S.

Liu, Y.

H. Liang, W. Zhang, P. Geng, Y. Liu, Z. Wang, J. Guo, S. Gao, and S. Yan, “Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber,” Opt. Lett.38(7), 1071–1073 (2013).
[CrossRef] [PubMed]

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Liu, Y. G.

Malitson, I.

Qian, W.

Tai, B.

Wang, D.

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
[CrossRef]

Wang, D. N.

Wang, S.

Wang, Y.

Wang, Z.

Wei, C.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Wu, D.

Wu, D. K.

Wu, Z.

Yan, S.

Yang, M.

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
[CrossRef]

Zhang, W.

Zhao, C. L.

Zheng, X.

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

Zhou, W.

Zou, B.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, “Transmission and temperature sensing characteristics of a selectively liquid-filled photonic-bandgap-fiber-based Sagnac interferometer,” Appl. Phys. Lett.100(14), 141104 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett.23(20), 1520–1522 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (5)

Other (1)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, A. S. Sedra, ed. (Oxford University, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the SFMOF based sensing system; (b) Transverse cross-section of the refabricated SFMOF; (c) The perspective view for the simplified model with liquid rod highlighted by the red.

Fig. 2
Fig. 2

Dispersion curves of the pure silica and the infiltrated liquid at different temperatures.

Fig. 3
Fig. 3

The MRI dispersion curves of the silica core and liquid rod at 52.5 °C. The insets show the typical modal energy distributions at different wavelengths in the twin-resonance-coupling regions.

Fig. 4
Fig. 4

The transmission spectra of the SFMOF corresponding to variations in temperature from 54.0 °C to 55.0 °C (a) and axial strain from the preset load to an extra 0.147 N (b).

Fig. 5
Fig. 5

The wavelength shift of the twin-resonance dips A and B in response to the temperature and axial strain, in theory and experiments.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n MRI =a+ b λ 2 + c λ 4 ,
n silica ( λ R ( T ),T )= n liquid ( λ R ( T ),T ).
S= d λ R dT = n silica /T n liquid /T n silica /λ n liquid /λ = K silica TOC - K liquid TOC n silica (λ) n liquid (λ) ,

Metrics