Abstract

We precisely generate dark solitons using an optical pulse synthesizer (OPS) at a repetition rate of 25 GHz and experimentally investigate soliton transmission through a normal-dispersion fiber. Because of their particular waveform, there are not many experimental studies. The OPS provides frequency-domain line-by-line modulation and produces arbitrary pulse waveforms. The soliton waveform has an intensity contrast greater than 20 dB. At certain input peak power, the pulse exhibits soliton transmission and maintains its initial waveform. The power agrees with soliton transmission theory. We confirm that the π phase shift at the center of the dark soliton is maintained after transmission through the fiber. We also investigate the influence of stimulated Brillouin scattering for long-distance transmission.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999).
    [CrossRef]
  2. E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
    [CrossRef]
  3. F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
    [CrossRef]
  4. P. Emplit, M. Haelterman, and J.-P. Hamaide, “Picosecond dark soliton over 1-km fiber at 850 nm,” Opt. Lett.18(13), 1047 (1993).
    [CrossRef] [PubMed]
  5. P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
    [CrossRef]
  6. R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B14(9), 2339 (1997).
    [CrossRef]
  7. W. J. Tomlinson, R. J. Hawkins, A. M. Weiner, J. P. Heritage, and R. N. Thurston, “Dark optical solitons with finite-width background pulses,” J. Opt. Soc. Am. B6(3), 329 (1989).
    [CrossRef]
  8. J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
    [CrossRef]
  9. A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
    [CrossRef]
  10. W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B9(7), 1134 (1992).
    [CrossRef]
  11. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
    [CrossRef]
  12. H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express6(6), 124–135 (2000).
    [CrossRef] [PubMed]
  13. K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
    [CrossRef]
  14. K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
    [CrossRef]
  15. W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
    [CrossRef]
  16. K. Ohno, T. Tanabe, and F. Kannari, “Adaptive pulse shaping of phase and amplitude of an amplified femtosecond pulse laser by direct reference to frequency-resolved optical gating traces,” J. Opt. Soc. Am. B19(11), 2781 (2002).
    [CrossRef]
  17. R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
    [CrossRef]
  18. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
    [CrossRef]
  19. J. P. Hamaide, P. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett.16(20), 1578–1580 (1991).
    [CrossRef] [PubMed]
  20. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
    [CrossRef]

2012 (1)

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

2011 (1)

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

2009 (2)

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

2003 (1)

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999).
[CrossRef]

1997 (4)

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B14(9), 2339 (1997).
[CrossRef]

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

1995 (1)

F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
[CrossRef]

1994 (2)

E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
[CrossRef]

J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (2)

J. P. Hamaide, P. Emplit, and M. Haelterman, “Dark-soliton jitter in amplified optical transmission systems,” Opt. Lett.16(20), 1578–1580 (1991).
[CrossRef] [PubMed]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
[CrossRef]

1989 (1)

Agrawal, G. P.

Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999).
[CrossRef]

Allen, K. M.

J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
[CrossRef]

Atieh, A.

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

Bourkoff, E.

Chernikov, S. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
[CrossRef]

Chrostowski, J.

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

De Lathouwer, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Dianov, E. M.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
[CrossRef]

Doran, N. J.

F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
[CrossRef]

J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
[CrossRef]

Emplit, P.

Forysiak, W.

F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
[CrossRef]

Foursa, D.

Galko, P.

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

Haelterman, M.

Hamaide, J. P.

Hamaide, J.-P.

Hawkins, R. J.

Heritage, J. P.

Inoue, Y.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Ishii, M.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Ishizu, H.

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

Kannari, F.

Kano, S. S.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

Kashiwagi, K.

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Kashyap, R.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

R. Leners, P. Emplit, D. Foursa, M. Haelterman, and R. Kashyap, “6.1-GHz dark-soliton generation and propagation by a fiber Bragg grating pulse-shaping technique,” J. Opt. Soc. Am. B14(9), 2339 (1997).
[CrossRef]

Knox, F. M.

F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
[CrossRef]

Kobe, R.

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

Kodama, Y.

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Kurokawa, T.

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express6(6), 124–135 (2000).
[CrossRef] [PubMed]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Leners, R.

Liao, Z. M.

Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999).
[CrossRef]

Mamyshev, P. V.

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
[CrossRef]

Marti-Panameno, E.

E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
[CrossRef]

Mizoguchi, R.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

Mozawa, K.

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

Myslinski, P.

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

Naganuma, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Ohno, K.

Okamoto, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Onda, K.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

Qiao, W.

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

Sanchez-Mondragon, J. J.

E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
[CrossRef]

Shioda, T.

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

Takenouchi, H.

H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express6(6), 124–135 (2000).
[CrossRef] [PubMed]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Tanabe, T.

Tanaka, Y.

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Thurston, R. N.

Tomlinson, W. J.

Tsuda, H.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express6(6), 124–135 (2000).
[CrossRef] [PubMed]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Vysloukh, V. A.

E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
[CrossRef]

Wada, A.

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

Weiner, A. M.

Williams, J. A. R.

J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
[CrossRef]

Zhao, W.

Electron. Lett. (1)

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. Marti-Panameno, J. J. Sanchez-Mondragon, and V. A. Vysloukh, “Theory of soliton pulse forming in an actively modelocked fiber laser,” IEEE J. Quantum Electron.30(3), 822–826 (1994).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron.27(10), 2347–2355 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Z. M. Liao and G. P. Agrawal, “High-bit-rate soliton transmission using distributed amplification and dispersion management,” IEEE Photon. Technol. Lett.11(7), 818–820 (1999).
[CrossRef]

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

IEICE Electron. Express (1)

W. Qiao, K. Mozawa, K. Kashiwagi, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of phase only pulse and its dispersion compensation in high power regime,” IEICE Electron. Express9(5), 410–415 (2012).
[CrossRef]

J. Lightwave Technol. (1)

F. M. Knox, W. Forysiak, and N. J. Doran, “10-Gbt/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation,” J. Lightwave Technol.13(10), 1955–1962 (1995).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (2)

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

Opt. Commun. (2)

J. A. R. Williams, K. M. Allen, N. J. Doran, and P. Emplit, “The generation of quasi-continuous trains of dark soliton-like pulses,” Opt. Commun.112(5-6), 333–338 (1994).
[CrossRef]

A. Atieh, P. Myslinski, J. Chrostowski, and P. Galko, “Generation of multigigahertz bright and dark soliton pulse trains,” Opt. Commun.133(1-6), 541–548 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

R. Mizoguchi, K. Onda, S. S. Kano, and A. Wada, “Thinning-out in optimized pulse shaping method using genetic algorithm,” Rev. Sci. Instrum.74(5), 2670 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup to generate dark solitons and transmit them through an optical fiber.

Fig. 2
Fig. 2

Target waveform: (a) Single dark soliton in a single repetition period. (b) Two dark solitons in a single repetition period.

Fig. 3
Fig. 3

Synthesized waveform of a single dark soliton in a single repetition period.

Fig. 4
Fig. 4

Dark soliton pulse with a pulse width of 10 ps: (a) intensity waveform and (b) spectrum.

Fig. 5
Fig. 5

Delayed interferometer output waveform for the waveform shown in Fig. 4(a) with a π phase difference.

Fig. 6
Fig. 6

(a) Intensity waveforms and (b) spectra of dark solitons with different input peak powers at the NDF output. Peak power was 8.2 dBm (black solid curve), 16.8 dBm (red solid curve), and 24.0 dBm (green solid curve). The blue dashed curve indicates the initial waveform.

Fig. 7
Fig. 7

(a) Dependence of output pulse width on input peak power, (b) Soliton peak power as a function of dark soliton pulse width.

Fig. 8
Fig. 8

Delayed interferometer output waveform: (a) 10 ps width, 16.7 dBm peak power; (b) 8 ps width, 18.6 dBm peak power.

Fig. 9
Fig. 9

Delayed interferometer output waveform: 10 ps width, peak input power of 24.0 dBm.

Fig. 10
Fig. 10

Optical power concentration ratio of one of the spectral peaks around the center wavelength.

Fig. 11
Fig. 11

(a) Intensity waveforms and (b) spectra of NDF-transmitted dark solitons without linewidth broadening.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E( t )=tanh( t ) ={ e iπ | tanh( t ) |(t<0). | tanh( t ) |(0t)
P 0 =3.11 | β 2 | / ( γ T FWHM 2 ) ,
P th 21 A eff L eff g B ,
L eff = [ 1exp(αL) ] /α ,

Metrics