Abstract

We perform a spectroscopic analysis of asphaltene in solution and in crude oil with the goal of designing an optical probe of asphaltene precipitation inside high-pressure cells. Quantitative analysis of steady-state spectroscopic data is employed to identify fluorescence and Raman contributions to the observed signals. Time-resolved fluorescence spectroscopy indicates that fluorescence lifetime can be used as a spectroscopic probe of asphaltene in crude oil. Quantitative confocal laser-scanning microscopy studies of asphaltene in n-heptane are used to calculate particle-size distributions as a function of time, both at the sample surface and asphaltene interior. The resulting precipitation kinetics is well described by stochastic numerical simulations of diffusion-limited aggregation. Based on these results, we present the design and construction of an apparatus to optically probe the in situ precipitation of asphaltene suitable for studies inside high pressure cells. Design considerations include the use of a spatial light modulator for aberration correction in microscopy measurements, together with the design of epi-fluorescence spectrometer, both fiber-based and for remote sensing fluorescence spectroscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
    [CrossRef]
  2. IP134/84 – Standard methods for analysis and testing of petroleum and related products.
  3. N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
    [CrossRef] [PubMed]
  4. N. F. Carnahan, “Precipitation of asphaltenes in heavy oil and tar sands,” Dev. Pet. Sci.12, 319–333 (2000).
  5. O. C. Mullins, “The asphaltenes,” Annu. Rev. Anal. Chem.4(1), 393–418 (2011).
    [CrossRef] [PubMed]
  6. A. Khoshandam and A. Alamdari, “Kinetics of asphaltene precipitation in a heptane-toluene mixture,” Energy Fuels24(3), 1917–1924 (2010).
    [CrossRef]
  7. T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
    [CrossRef]
  8. J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
    [CrossRef]
  9. R. O. Iddem, H. H. “Kinetics of CO2-induced asphaltene precipitation from various Saskatchewan crude oils during CO2 miscible flooding,” J. Pet. Sci. Eng.35, 233–246 (2002).
  10. D. J. Gardiner, Practical Raman Spectroscopy (Springer, 1989).
  11. American Society for Testing and Materials, ASTM D287. Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method), 2006.
  12. American Society for Testing and Materials, ASTM D6560. ASTM INTERNATIONAL, Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum Products, D 6560, 00, 2005.
  13. A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
    [CrossRef] [PubMed]
  14. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  15. C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
    [CrossRef]
  16. W. Rothschild, Fractals in Chemistry (Wiley-Interscience, 1998).
  17. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. C. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012).
    [CrossRef] [PubMed]
  18. D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
    [CrossRef]

2013 (2)

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
[CrossRef]

2012 (1)

2011 (2)

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

O. C. Mullins, “The asphaltenes,” Annu. Rev. Anal. Chem.4(1), 393–418 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Khoshandam and A. Alamdari, “Kinetics of asphaltene precipitation in a heptane-toluene mixture,” Energy Fuels24(3), 1917–1924 (2010).
[CrossRef]

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

2008 (1)

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

2005 (1)

N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
[CrossRef] [PubMed]

2002 (1)

R. O. Iddem, H. H. “Kinetics of CO2-induced asphaltene precipitation from various Saskatchewan crude oils during CO2 miscible flooding,” J. Pet. Sci. Eng.35, 233–246 (2002).

2000 (1)

N. F. Carnahan, “Precipitation of asphaltenes in heavy oil and tar sands,” Dev. Pet. Sci.12, 319–333 (2000).

1999 (1)

H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
[CrossRef]

Alamdari, A.

A. Khoshandam and A. Alamdari, “Kinetics of asphaltene precipitation in a heptane-toluene mixture,” Energy Fuels24(3), 1917–1924 (2010).
[CrossRef]

Bifano, T.

Boek, E. S.

C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
[CrossRef]

Carnahan, N. F.

N. F. Carnahan, “Precipitation of asphaltenes in heavy oil and tar sands,” Dev. Pet. Sci.12, 319–333 (2000).

Carrier, H.

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

Cassiede, M.

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

Chapman, W. G.

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

Crawshaw, J.

C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
[CrossRef]

Dabros, T.

N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
[CrossRef] [PubMed]

Daridon, J. L.

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

Fogler, H. S.

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

Ghotbi, S.

H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
[CrossRef]

Gonzalez, D. L.

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

Hirasaki, G. J.

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

Hoepfner, M. P.

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

Hoff, W. D.

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Hoffman, S.

Iddem, R. O.

R. O. Iddem, H. H. “Kinetics of CO2-induced asphaltene precipitation from various Saskatchewan crude oils during CO2 miscible flooding,” J. Pet. Sci. Eng.35, 233–246 (2002).

Khoshandam, A.

A. Khoshandam and A. Alamdari, “Kinetics of asphaltene precipitation in a heptane-toluene mixture,” Energy Fuels24(3), 1917–1924 (2010).
[CrossRef]

Lu, Y.

Manafi, H.

H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
[CrossRef]

Mansoori, G. A.

H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
[CrossRef]

Maqbool, T.

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

Masliyah, J. H.

N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
[CrossRef] [PubMed]

Moore, J.

Mullins, O. C.

O. C. Mullins, “The asphaltenes,” Annu. Rev. Anal. Chem.4(1), 393–418 (2011).
[CrossRef] [PubMed]

Nasri, D.

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

Nome, R. A.

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Papadantonakis, G. A.

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Pauly, J.

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

Paxman, R.

Philip, A. F.

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Raha, S.

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

Rahmani, N. H. G.

N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
[CrossRef] [PubMed]

Scherer, N. F.

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Seifried, C. M.

C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
[CrossRef]

Stockbridge, C.

Toussaint, K. C.

Vargas, F. M.

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

O. C. Mullins, “The asphaltenes,” Annu. Rev. Anal. Chem.4(1), 393–418 (2011).
[CrossRef] [PubMed]

Dev. Pet. Sci. (1)

N. F. Carnahan, “Precipitation of asphaltenes in heavy oil and tar sands,” Dev. Pet. Sci.12, 319–333 (2000).

Energy Fuels (5)

C. M. Seifried, J. Crawshaw, and E. S. Boek, “Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning micrsocopy,” Energy Fuels27(4), 1865–1872 (2013).
[CrossRef]

A. Khoshandam and A. Alamdari, “Kinetics of asphaltene precipitation in a heptane-toluene mixture,” Energy Fuels24(3), 1917–1924 (2010).
[CrossRef]

T. Maqbool, S. Raha, M. P. Hoepfner, and H. S. Fogler, “Modeling the aggregation of asphaltene nanoaggregates in crude oil-precipitant systems,” Energy Fuels25(4), 1585–1596 (2011).
[CrossRef]

J. L. Daridon, M. Cassiede, D. Nasri, J. Pauly, and H. Carrier, “Probing asphaltene flocculation by a quartz crystal resonator,” Energy Fuels27(8), 4639–4647 (2013).
[CrossRef]

D. L. Gonzalez, F. M. Vargas, G. J. Hirasaki, and W. G. Chapman, “Modeling study of CO2-induced asphaltene precipitation,” Energy Fuels22(2), 757–762 (2008).
[CrossRef]

J. Colloid Interface Sci. (1)

N. H. G. Rahmani, T. Dabros, and J. H. Masliyah, “Fractal structure of asphaltene aggregates,” J. Colloid Interface Sci.285(2), 599–608 (2005).
[CrossRef] [PubMed]

J. Pet. Sci. Eng. (2)

H. Manafi, G. A. Mansoori, and S. Ghotbi, “Phase behavior prediction of petroleum fluids with minimum characterization data,” J. Pet. Sci. Eng.22(1–3), 67–93 (1999).
[CrossRef]

R. O. Iddem, H. H. “Kinetics of CO2-induced asphaltene precipitation from various Saskatchewan crude oils during CO2 miscible flooding,” J. Pet. Sci. Eng.35, 233–246 (2002).

Opt. Express (1)

Proc. Natl. Acad. Sci. U. S. A. (1)

A. F. Philip, R. A. Nome, G. A. Papadantonakis, N. F. Scherer, and W. D. Hoff, “Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface,” Proc. Natl. Acad. Sci. U. S. A.107(13), 5821–5826 (2010).
[CrossRef] [PubMed]

Other (6)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

W. Rothschild, Fractals in Chemistry (Wiley-Interscience, 1998).

IP134/84 – Standard methods for analysis and testing of petroleum and related products.

D. J. Gardiner, Practical Raman Spectroscopy (Springer, 1989).

American Society for Testing and Materials, ASTM D287. Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method), 2006.

American Society for Testing and Materials, ASTM D6560. ASTM INTERNATIONAL, Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum Products, D 6560, 00, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectroscopic characterization of oil and asphaltene. (a): Plot of emission frequency as a function of excitation frequency for light oil diluted in n-heptane with error bars along the y-axis (black points), asphaltene solid (red and green points). The expected values for paraffin alkanes are shown as light and dark blue points. (b): Plot of fluorescence lifetime of asphaltene sample precipitated with n-heptane (black curve) and heavy oil (red curve) overlaid with the Ludox standard response (green curve).

Fig. 2
Fig. 2

Quantitative confocal microscopy investigation of asphaltene precipitation kinetics. Sample: light crude oil in n-heptane. From left to right, we show data taken 3 minutes (left), 18 minutes (center), and 33 minutes (right) after sample injection into the confocal microscope. (A): raw data, (B): 8-bit grayscale image, (C): particle count, (D): statistical analysis of particle counts.

Fig. 3
Fig. 3

Stochastic numerical simulations of two-dimensional diffusion and aggregation on a square lattice as a model for diffusion-limited aggregation.

Fig. 4
Fig. 4

(A) Schematic design of a fluorescence-based optical probe for high-pressure cells. L: laser; LWD: long-working distance objective; F: optical fiber; CCD: CCD camera; SP: spectrometer; APD: single-photon avalanche photodiode. (B) Fluorescence spectra measured employing excitation approach (i); (C) Fluorescence spectra measured employing excitation approach (ii) (see Main Text for details).

Fig. 5
Fig. 5

(A) Adaptive optic setup for aberration correction. Two Shack-Hartmann wavefront sensor screen captures are shown: (B) the spot field obtained before aberration correction, and (C) after aberration correction.

Tables (2)

Tables Icon

Table 1 TC-SPC fluorescence lifetime excitation and emission wavelengths, and nonlinear squares fitting parameters obtained for light oil, heavy oil, and asphaltene precipitate.

Tables Icon

Table 2 Adaptive optics-based correction of aberration induced by high-pressure cell optical windows.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F( t )= i=1 N B i exp( t τ i )
P( x,t ) t =D 2 P( x,t )

Metrics