Abstract

Broadened plasmon resonances of Cu nanoparticles in nanopatterned mixed oxide sol-gel nanopillars are shown to be readily detected by spectroscopic Mueller matrix ellipsometry. The plasmonic nanomaterials are obtained by low energy ion sputtering of a CuO sol-gel film. Both s- and p-polarized plasmon resonances are observed in the off-block-diagonal and the block-diagonal Mueller matrix elements as well as in the generalized ellipsometric parameters. The resonant features in all elements correlate with both maximum depolarization and a minimum in the reflected intensity. The spectral position and the polarization character of the plasmon resonances are discussed phenomenologically through effective medium theory.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Inc., 2005).
    [CrossRef]
  2. H. Fujiwara, ed., Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Ltd., 2007).
    [CrossRef]
  3. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
    [CrossRef]
  4. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
    [CrossRef]
  5. I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
    [CrossRef] [PubMed]
  6. T. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology16, 2606 (2005).
    [CrossRef]
  7. I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
    [CrossRef]
  8. I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
    [CrossRef]
  9. L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
    [CrossRef]
  10. P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
    [CrossRef] [PubMed]
  11. Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).
  12. S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
    [CrossRef]
  13. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  14. K. Willets and R. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
    [CrossRef]
  15. P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
    [CrossRef]
  16. G. F. Walsh, C. Forestiere, and L. Dal Negro, “Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.” Opt. Express19, 21081–21090 (2011).
    [CrossRef] [PubMed]
  17. N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
    [CrossRef]
  18. T. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19, 2014–2028 (2011).
    [CrossRef] [PubMed]
  19. J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
    [CrossRef]
  20. S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE1166, 177–185 (1989).
    [CrossRef]
  21. P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
    [CrossRef]
  22. J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” J. Mod. Opt.33, 185–189 (1986).
  23. R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  24. M. Schubert, Handbook of Ellipsometry (William Andrew, 2005), chap. Theory and Application of Generalized Ellipsometry.
  25. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).
  26. J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000).
    [CrossRef]
  27. D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50, 704 (1982).
    [CrossRef]
  28. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
    [CrossRef]
  29. T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am.68, 1039 (1978).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of solids (Academic Press Inc., 1985).
  31. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
    [CrossRef]
  32. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
    [CrossRef] [PubMed]

2013

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

2012

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

2011

P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

T. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19, 2014–2028 (2011).
[CrossRef] [PubMed]

G. F. Walsh, C. Forestiere, and L. Dal Negro, “Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.” Opt. Express19, 21081–21090 (2011).
[CrossRef] [PubMed]

2010

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

2009

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

2008

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

2007

K. Willets and R. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

2005

T. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology16, 2606 (2005).
[CrossRef]

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

2003

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

2000

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000).
[CrossRef]

1999

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

1989

S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE1166, 177–185 (1989).
[CrossRef]

1986

J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” J. Mod. Opt.33, 185–189 (1986).

1982

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50, 704 (1982).
[CrossRef]

1980

P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
[CrossRef]

1978

1974

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
[CrossRef]

Aas, L.

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

Abdeddaim, R.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Alcaraz de la Osa, R.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Alekseeva, A. V.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Arwin, H.

Aspnes, D. E.

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50, 704 (1982).
[CrossRef]

Azzam, R.

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Barthel, E.

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

Bashara, N.

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Bernabeu, E.

J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” J. Mod. Opt.33, 185–189 (1986).

Bogatyrev, V. a.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

Brown, A. S.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Brun, N.

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

Bruno, G.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Choi, S.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Cloude, S. R.

S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE1166, 177–185 (1989).
[CrossRef]

Cohin, Y.

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

Dal Negro, L.

de Rosny, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Duyne, R. V.

K. Willets and R. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

Dykman, L. a.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Espinoza-Beltrán, F.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Esumi, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

Everitt, H. O.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Facsko, S.

Foldyna, M.

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

Forestiere, C.

Funston, A. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Gallas, B.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Garcia de Abajo, F. J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Garcia-Rodriguez, F.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Gil, J.

J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” J. Mod. Opt.33, 185–189 (1986).

Goldman, C.

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

González-Hernández, J.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Gonzlez, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Grand, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Guida, G.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Guth, N.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Hauge, P.

P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
[CrossRef]

Herman, I.

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000).
[CrossRef]

Hofmann, T.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

Irene, E. A.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Inc., 2005).
[CrossRef]

Jouvaud, C.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Khlebtsov, B. N.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Khlebtsov, N. G.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Kildemo, M.

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

Kim, T.-H.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Kinbara, A.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
[CrossRef]

Kuwata, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

Le Roy, S.

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

Lelarge, A.

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

Li, B.

P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Losurdo, M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Melnikov, A. G.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Miyano, K.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

Moreno, F.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Mücklich, A.

T. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology16, 2606 (2005).
[CrossRef]

Muller, R.

P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
[CrossRef]

Mulvaney, P.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Nerbø, I.

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

Nerbø, I. S.

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

Novo, C.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Oates, T.

T. Oates, M. Ranjan, S. Facsko, and H. Arwin, “Highly anisotropic effective dielectric functions of silver nanoparticle arrays,” Opt. Express19, 2014–2028 (2011).
[CrossRef] [PubMed]

T. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology16, 2606 (2005).
[CrossRef]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Ourir, A.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of solids (Academic Press Inc., 1985).

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Pérez-Robles, J.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Ranjan, M.

Rivory, J.

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

Roy, S. L.

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

Saiz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Sanz, J. M.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

Schmidt, D.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

Schubert, E.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

Schubert, M.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

M. Schubert, Handbook of Ellipsometry (William Andrew, 2005), chap. Theory and Application of Generalized Ellipsometry.

Smith, C.

P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
[CrossRef]

Søndergård, E.

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

Spanier, J.

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000).
[CrossRef]

Sudoh, A.

Takahashi, H.

Tamaru, H.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Inc., 2005).
[CrossRef]

Trachuk, L. a.

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

Vorobiev, Y.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Walsh, G. F.

Wang, P.

P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
[CrossRef] [PubMed]

Willets, K.

K. Willets and R. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

Wu, P. C.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, H. Takahashi, and A. Sudoh, “Optical behavior of a metal island film,” J. Opt. Soc. Am.68, 1039 (1978).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
[CrossRef]

Yáñez Limón, J.

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
[CrossRef]

Zhao, X.

P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
[CrossRef] [PubMed]

Am. J. Phys.

D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50, 704 (1982).
[CrossRef]

Annu. Rev. Phys. Chem.

K. Willets and R. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

Appl. Phys. Lett.

H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation,” Appl. Phys. Lett.83, 4625–4627 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett.94, 011914 (2009).
[CrossRef]

I. Nerbø, S. L. Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of GaSb nanostructures during sputtering,” Appl. Phys. Lett.94, 213105 (2009).
[CrossRef]

Chem. Soc. Rev.

V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev.37, 1792–1805 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. C.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. Gonzlez, A. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “Uv plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects,” J. Phys. Chem. C.117, 19606–19615 (2013).

J. Phys. Chem. Solids

J. Pérez-Robles, F. Garcia-Rodriguez, J. Yáñez Limón, F. Espinoza-Beltrán, Y. Vorobiev, and J. González-Hernández, “Characterization of sol-gel glasses with different copper concentrations treated under oxidizing and reducing conditions,” J. Phys. Chem. Solids60, 1729–1736 (1999).
[CrossRef]

J. Appl. Phys.

S. L. Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: A general concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys.106, 094308 (2009).
[CrossRef]

J. Appl. Phys.

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys.108, 014307 (2010).
[CrossRef]

J. Mod. Opt.

J. Gil and E. Bernabeu, “Depolarization and polarization indices of an optical system,” J. Mod. Opt.33, 185–189 (1986).

J. Opt. Soc. Am.

J. Phys. Chem. B

N. G. Khlebtsov, A. G. Melnikov, V. a. Bogatyrev, L. a. Dykman, A. V. Alekseeva, L. a. Trachuk, and B. N. Khlebtsov, “Can the light scattering depolarization ratio of small particles be greater than 1/3?” J. Phys. Chem. B109, 13578–13584 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B25, 1019 (2007).
[CrossRef]

Nanotechnology

T. Oates and A. Mücklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology16, 2606 (2005).
[CrossRef]

Opt. Express

I. S. Nerbø, S. Le Roy, M. Foldyna, E. Søndergård, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment.” Opt. Express19, 12551–12561 (2011).
[CrossRef] [PubMed]

P. Wang, X. Zhao, and B. Li, “ZnO-coated CuO nanowire arrays: fabrications, optoelectronic properties, and photovoltaic applications,” Opt. Express19, 11271 (2011).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: Influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85, 115138 (2012).
[CrossRef]

Phys. Rev. B

J. Spanier and I. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films,” Phys. Rev. B61, 10437–10450 (2000).
[CrossRef]

Proc. SPIE

S. R. Cloude, “Conditions for the physical realisability of matrix operators in polarimetry,” Proc. SPIE1166, 177–185 (1989).
[CrossRef]

Surf. Sci.

P. Hauge, R. Muller, and C. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci.96, 81–107 (1980).
[CrossRef]

Thin Solid Films

L. Aas, M. Kildemo, Y. Cohin, and E. Søndergård, “Determination of small tilt angles of short gasb nanopillars using uv-visible mueller matrix ellipsometry,” Thin Solid Films541, 97–101 (2012).
[CrossRef]

Thin Solid Films

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films21, 173–187 (1974).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of solids (Academic Press Inc., 1985).

R. Azzam and N. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

M. Schubert, Handbook of Ellipsometry (William Andrew, 2005), chap. Theory and Application of Generalized Ellipsometry.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Inc., 2005).
[CrossRef]

H. Fujiwara, ed., Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons Ltd., 2007).
[CrossRef]

Y. Cohin, E. Barthel, N. Brun, C. Goldman, S. Le Roy, and E. Søndergård, “Spontaneous formation of copper-silica nanostructures by ion abrasion,” Smart Mater. Struct. (In review).

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SEM images of the surface of samples A and B. The view angle is 40° in both images.

Fig. 2
Fig. 2

Height distribution for sample A and B estimated from the AFM images (not shown).

Fig. 3
Fig. 3

Sketch of the nanopillars with Cu nanoparticles on top, inside or on the side of the nanopillars [11]. Pillar (a) and (d) represent the phenomenological model, while (b) and (c) shows variations in the Cu-cap as reported in Cohin et al. [11]. The figure also shows the local geometry of the tilted nanopillars with the z axis parallel to the pillars tilted a small angle θtilt away from the sample normal, and the x and y axis perpendicular to the pillars. x, y and z are proposed to form the principal axis of the diagonal dielectric tensor for the oxide nanopillars/Cu particles system. The components of the incident field, similar to Fig. 4 is also drawn, where θ is the incidence angle with respect to the substrate surface normal.

Fig. 4
Fig. 4

Sketch of the measurement system configuration, showing the incidence plane, the incidence angle (θ) and the azimuthal rotation of the sample (ϕ).

Fig. 5
Fig. 5

Measured spectroscopic Mueller matrix for a complete 360° azimuthal rotation of the samples a) A and b) B with incidence angles of 65° and 70°, respectively. The radial and azimuthal axes correspond to photon energy and in plane rotation, respectively.

Fig. 6
Fig. 6

Total (not normalized) reflected intensity (top figure), the depolarisation index (bottom figure) and selected Mueller matrix elements for a complete azimuthal rotation of samples A and B versus photon energy with incidence angles of 65° for sample A and 70° for sample B. The positions indicated by the red lines show the maxima of m33 element and dashed black lines are calculated Mueller matrix elements from the air/c-Si interface.

Fig. 7
Fig. 7

Total intensity (top figure), selected Mueller matrix elements and depolarization index (bottom figure) for samples A and B versus photon energy with different incidence angles and azimuthal angles of 0° for sample A and 45° for sample B.

Fig. 8
Fig. 8

Generalized ellipsometric parameters ψ, ψsp and ψps of samples A and B for the azimuthal angle 0°. The parameters are calculated from the Mueller matrix in Fig. 6.

Fig. 9
Fig. 9

a) The spectral position of the plasmon resonances of Cu nano-particles estimated using the Froehlich condition, with the host material (nano-pillar/void matrix) calculated using the generalized EMT for an uniaxial material, as a function of the volume fraction (fill-factor) of the oxide nanopillars. The depolarization factors for the oxide nanopillars (SiO2) in the host matrix was Lz=0 and Lx,y=0.5. b) The estimated spectral position of the resonances as a function of the Cu particle size, using a fill-factor of the oxide pillars of 0.1, in the EMT for the host matrix. In both figures, the legends represent the depolarization factors used to model the shape of the Cu-particle inclusions in the host matrix.

Tables (2)

Tables Icon

Table 1 Fabrication parameters for the samples.

Tables Icon

Table 2 Rough estimate of position of the localized plasmon resonances and their polarization characteristics for samples A and B

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = M L P out M ( ψ , Δ ) M L P in
r p p r s s = tan ψ e i Δ , r s p r s s = tan ψ s p e i Δ s p , r p s r p p = tan ψ p s e i Δ p s .

Metrics