S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

G. L. Hunter and E. R. Weeks, “The physics of the colloidal glass transition,” Rep. Prog. Phys. 75, 066501 (2012).

[CrossRef]
[PubMed]

Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

U. Gasser, “Crystallization in three- and two-dimensional colloidal suspensions,” J. Phys. Condens. Mat. 21, 203101 (2009).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17, 4685–4704 (2009).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

T. Aste, M. Saadatfar, and T. J. Senden, “Geometrical structure of disordered sphere packings,” Phys. Rev. E 71, 061302 (2005).

[CrossRef]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).

[CrossRef]

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).

[CrossRef]

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

D. R. Wilkinson and S. F. Edwards, “The use of stereology to determine the partial two-body correlation functions for hard sphere ensembles,” J. Phys. D Appl. Phys. 15, 551–562 (1982).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

T. Aste, M. Saadatfar, and T. J. Senden, “Geometrical structure of disordered sphere packings,” Phys. Rev. E 71, 061302 (2005).

[CrossRef]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, 2008).

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).

[CrossRef]

D. G. Grier and J. C. Crocker, personal communication.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, 2008).

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

D. R. Wilkinson and S. F. Edwards, “The use of stereology to determine the partial two-body correlation functions for hard sphere ensembles,” J. Phys. D Appl. Phys. 15, 551–562 (1982).

[CrossRef]

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

U. Gasser, “Crystallization in three- and two-dimensional colloidal suspensions,” J. Phys. Condens. Mat. 21, 203101 (2009).

[CrossRef]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).

[CrossRef]

D. G. Grier and J. C. Crocker, personal communication.

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).

[CrossRef]
[PubMed]

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, 2006).

G. L. Hunter and E. R. Weeks, “The physics of the colloidal glass transition,” Rep. Prog. Phys. 75, 066501 (2012).

[CrossRef]
[PubMed]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, 2006).

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, 2008).

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

T. Aste, M. Saadatfar, and T. J. Senden, “Geometrical structure of disordered sphere packings,” Phys. Rev. E 71, 061302 (2005).

[CrossRef]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

T. Aste, M. Saadatfar, and T. J. Senden, “Geometrical structure of disordered sphere packings,” Phys. Rev. E 71, 061302 (2005).

[CrossRef]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

S. W. Smith, The Scientist & Engineer’s Guide to Digital Signal Processing (California Technical, 1997).

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).

[CrossRef]

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, 2008).

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).

[CrossRef]
[PubMed]

G. L. Hunter and E. R. Weeks, “The physics of the colloidal glass transition,” Rep. Prog. Phys. 75, 066501 (2012).

[CrossRef]
[PubMed]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).

[CrossRef]
[PubMed]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

D. R. Wilkinson and S. F. Edwards, “The use of stereology to determine the partial two-body correlation functions for hard sphere ensembles,” J. Phys. D Appl. Phys. 15, 551–562 (1982).

[CrossRef]

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).

[CrossRef]
[PubMed]

D. Frenkel, R. J. Vos, C. G. de Kruif, and A. Vrij, “Structure factors of polydisperse systems of hard spheres: A comparison of Monte Carlo simulations and Percus-Yevick theory,” J. Chem. Phys. 84, 4625–4630 (1986).

[CrossRef]

C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra, and A. van Blaaderen, “Re-entrant melting and freezing in a model system of charged colloids,” J. Chem. Phys. 124, 244706 (2006).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, D. C. Rapaport, A. B. Schofield, and E. Sloutskin, “Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation,” J. Chem. Phys. 137, 184505 (2012).

[CrossRef]
[PubMed]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).

[CrossRef]

U. Gasser, “Crystallization in three- and two-dimensional colloidal suspensions,” J. Phys. Condens. Mat. 21, 203101 (2009).

[CrossRef]

D. R. Wilkinson and S. F. Edwards, “The use of stereology to determine the partial two-body correlation functions for hard sphere ensembles,” J. Phys. D Appl. Phys. 15, 551–562 (1982).

[CrossRef]

Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, “Thermal vestige of the zero-temperature jamming transition,” Nature 459, 230–233 (2009).

[CrossRef]
[PubMed]

P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, “Gelation of particles with short-range attraction,” Nature 453, 499–503 (2008).

[CrossRef]
[PubMed]

P. J. Lu, P. A. Sims, H. Oki, J. B. Macarthur, and D. A. Weitz, “Target-locking acquisition with real-time confocal (TARC) microscopy,” Opt. Express 15, 8702–8712 (2007).

[CrossRef]
[PubMed]

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express 17, 4685–4704 (2009).

[CrossRef]
[PubMed]

T. Aste, M. Saadatfar, and T. J. Senden, “Geometrical structure of disordered sphere packings,” Phys. Rev. E 71, 061302 (2005).

[CrossRef]

M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and T. Aste, “Onset of mechanical stability in random packings of frictional particles,” Phys. Rev. Lett. 101, 018301 (2008).

[CrossRef]

Z. Zheng, F. Wang, and Y. Han, “Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids,” Phys. Rev. Lett. 107, 065702 (2011).

[CrossRef]
[PubMed]

A. P. Cohen, E. Janai, E. Mogilko, A. B. Schofield, and E. Sloutskin, “Fluid suspensions of colloidal ellipsoids: Direct structural measurements,” Phys. Rev. Lett. 107, 238301 (2011).

[CrossRef]
[PubMed]

S. R. Liber, S. Borohovich, A. V. Butenko, A. B. Schofield, and E. Sloutskin, “Dense colloidal fluids form denser amorphous sediments,” Proc. Nat. Acad. Sci. U. S. A. 110, 5769–5773 (2013).

[CrossRef]

G. L. Hunter and E. R. Weeks, “The physics of the colloidal glass transition,” Rep. Prog. Phys. 75, 066501 (2012).

[CrossRef]
[PubMed]

U. Gasser, E. R. Weeks, A. B. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001).

[CrossRef]
[PubMed]

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).

[CrossRef]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).

[CrossRef]
[PubMed]

X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions,” Science 333, 1276–1279 (2011).

[CrossRef]
[PubMed]

http://tacaswell.github.io/tracking/html/

http://github.com/peterlu/PLuTARC_centerfind2D

S. W. Smith, The Scientist & Engineer’s Guide to Digital Signal Processing (California Technical, 1997).

D. G. Grier and J. C. Crocker, personal communication.

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, 2006).

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications (Springer, 2008).