Abstract

A simple and low-cost technique is proposed to construct a tunable liquid crystal (LC) microlens with a crater polymer structure, which is prepared using micro-drop technology and 2-step UV polymerization. The dimensions and the geometric profile of the restructured polymer surface significantly depend on the volume of the micro droplet, and the UV irradiation dose. In this work, the focal length of the LC microlens is controlled electrically from infinity to 7.8 cm. Such a microlens has prospective applications in optical communications, image processing, and switchable 2D/3D displays.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of performance of liquid crystal microlens with polymer surface modification

Shug-June Hwang, Yi-Xiang Liu, and Glen Andrew Porter
Opt. Express 22(4) 4620-4627 (2014)

Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

Ramon Pericet-Camara, Andreas Best, Sebastian K. Nett, Jochen S. Gutmann, and Elmar Bonaccurso
Opt. Express 15(15) 9877-9882 (2007)

Liquid-crystal microlens arrays using patterned polymer networks

Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu
Opt. Lett. 29(14) 1608-1610 (2004)

References

  • View by:
  • |
  • |
  • |

  1. H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
    [Crossref]
  2. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
    [Crossref]
  3. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  4. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  5. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
    [Crossref] [PubMed]
  6. H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
    [Crossref]
  7. M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
    [Crossref]
  8. C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
    [Crossref] [PubMed]
  9. H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
    [Crossref] [PubMed]
  10. R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15(15), 9877–9882 (2007).
    [Crossref] [PubMed]
  11. E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
    [Crossref]
  12. B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
    [Crossref]
  13. F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
    [Crossref]
  14. Norland Products, https://www.norlandprod.com/adhesives/noa61pg2.html .

2013 (2)

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

C. J. Hsu and C. R. Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization,” Opt. Express 19(16), 14999–15008 (2011).
[Crossref] [PubMed]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
[Crossref]

2009 (1)

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
[Crossref]

2007 (2)

2006 (3)

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
[Crossref]

2005 (1)

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

2004 (1)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Best, A.

Bonaccurso, E.

R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, “Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device,” Opt. Express 15(15), 9877–9882 (2007).
[Crossref] [PubMed]

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

Butt, H. J.

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

Chen, F.-C.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
[Crossref]

Chen, M.-S.

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
[Crossref]

de Gans, B. J.

B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
[Crossref]

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Graf, K.

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

Gutmann, J. S.

Hankeln, B.

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

Hoeppener, S.

B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
[Crossref]

Hsu, C. J.

Huang, W.-K.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
[Crossref]

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Lavrentovich, O. D.

Lee, S. H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Lin, H.-C.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
[Crossref]

Lin, Y.-H.

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
[Crossref]

H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

Lu, J.-P.

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
[Crossref]

Nett, S. K.

Niesenhaus, B.

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

Pericet-Camara, R.

Pishnyak, O.

Ren, H.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Sato, S.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006).
[Crossref] [PubMed]

Schubert, U. S.

B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
[Crossref]

Sheu, C. R.

Wang, B.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Wang, Q.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Wu, S. T.

H. Ren, S. Xu, and S. T. Wu, “Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time,” Opt. Lett. 38(16), 3144–3147 (2013).
[Crossref] [PubMed]

H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xu, M.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Xu, S.

Ye, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Zhou, Z.

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Adv. Mater. (1)

B. J. de Gans, S. Hoeppener, and U. S. Schubert, “Polymer-relief microstructures by inkjet etching,” Adv. Mater. 18(7), 910–914 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Lin, and S. T. Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88(19), 191116 (2006).
[Crossref]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, “Fabrication of microvessels and microlenses from polymers by solvent droplets,” Appl. Phys. Lett. 86(12), 124101 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F.-C. Chen, J.-P. Lu, and W.-K. Huang, “Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays,” IEEE Photon. Technol. Lett. 21(10), 648–650 (2009).
[Crossref]

J. Appl. Phys. (1)

M. Xu, Z. Zhou, H. Ren, S. H. Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Trans. Elec. Electronic Mat. (1)

H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A review of electrically tunable focusing liquid crystal lenses,” Trans. Elec. Electronic Mat. 12(6), 234–240 (2011).
[Crossref]

Other (1)

Norland Products, https://www.norlandprod.com/adhesives/noa61pg2.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the LC microlens fabrication process using the Micro-Drop method.

Fig. 2
Fig. 2

A schematic diagram of the crater formation. (a) A model of the Micro-Drop technology process. (b) The mechanism in fabricating the polymer crater.

Fig. 3
Fig. 3

Experimental set up for measuring the voltage-dependent focal length of a VA-LC microlens.

Fig. 4
Fig. 4

2D images of the polymer crater observed by (a) optical microscope and (b) optical surface profiler.

Fig. 5
Fig. 5

The measured crater diameter and depth versus (a) the pre-exposure time, and (b) the drop volume.

Fig. 6
Fig. 6

The LC microlenses observed by a cross-polarized microscope under different applied voltages. The arrows P and A represent an orientation of crossed polarizer and analyzer, as well as R is the rubbing direction.

Fig. 7
Fig. 7

The interference fringes of the LC microlens at different voltages of 0, 15, 20, 30, 40 and 80 Vrms.

Fig. 8
Fig. 8

The focal length of the LC microlens with respect to the applied voltage, as directly measured, and as calculated from the number of rings in the interference pattern.

Fig. 9
Fig. 9

(a) A focal object seen only with an optical microscope, and the imaging behavior of the LC lens at (b) V = 0, (c) V = 20 and (d) V = 30 Vrms.

Metrics