Abstract

Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
    [CrossRef]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).
  3. R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astrophys. 50, arXiv:1201.5741 (2012).
  4. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  5. J.  Rha, R. S.  Jonnal, K. E.  Thorn, J.  Qu, Y.  Zhang, D. T.  Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
    [CrossRef] [PubMed]
  6. A.  Roorda, F.  Romero-Borja, W.  Donnelly Iii, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [CrossRef] [PubMed]
  7. R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  8. Y.  Zhang, B.  Cense, J.  Rha, R. S.  Jonnal, W.  Gao, R. J.  Zawadzki, J. S.  Werner, S.  Jones, S.  Olivier, D. T.  Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
    [CrossRef] [PubMed]
  9. X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [CrossRef] [PubMed]
  10. X.  Tao, O.  Azucena, M.  Fu, Y.  Zuo, D. C.  Chen, J.  Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
    [CrossRef] [PubMed]
  11. K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [CrossRef] [PubMed]
  12. Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
    [CrossRef] [PubMed]
  13. A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [CrossRef]
  14. B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
    [CrossRef] [PubMed]
  15. T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
    [CrossRef] [PubMed]
  16. R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
    [CrossRef]
  17. J.  Jang, J.  Lim, H.  Yu, H.  Choi, J.  Ha, J. H.  Park, W. Y.  Oh, W.  Jang, S. D.  Lee, Y. K.  Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
    [CrossRef] [PubMed]
  18. B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).
  19. G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
    [CrossRef]
  20. J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
    [CrossRef] [PubMed]
  21. M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
    [CrossRef]
  22. G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
    [CrossRef]
  23. E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
    [CrossRef]
  24. S. B. G. O’Brien and L. W. Schwartz, “Theory and modeling of thin film flows,” in Encyclopedia of Surface and Colloid Science (Taylor and Francis, 2002), pp. 5283–5297.
  25. S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, 2012).
  26. P. C.  Miles, “Geometry of the fringe field formed in the intersection of two Gaussian beams,” Appl. Opt. 35(30), 5887–5895 (1996).
    [CrossRef] [PubMed]
  27. J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
    [CrossRef]
  28. A. Sommerfeld, Mechanics of Deformable Bodies (Lectures on Theoretical Physics) (Academic, 1950).
  29. R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).
  30. G.  Vdovin, P. M.  Sarro, “Flexible mirror micromachined in silicon,” Appl. Opt. 34(16), 2968–2972 (1995).
    [CrossRef] [PubMed]
  31. K.-H.  Brenner, W.  Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt. 32(26), 4984–4988 (1993).
    [CrossRef] [PubMed]
  32. K.  Matsushima, H.  Schimmel, F.  Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20(9), 1755–1762 (2003).
    [CrossRef] [PubMed]

2013 (6)

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

J.  Jang, J.  Lim, H.  Yu, H.  Choi, J.  Ha, J. H.  Park, W. Y.  Oh, W.  Jang, S. D.  Lee, Y. K.  Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[CrossRef] [PubMed]

2012 (4)

R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

2011 (2)

2010 (1)

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

2008 (1)

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

2006 (2)

2005 (2)

2003 (1)

2002 (2)

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

A.  Roorda, F.  Romero-Borja, W.  Donnelly Iii, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

1995 (1)

1993 (1)

1953 (1)

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Azucena, O.

Babcock, H. W.

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Böhm, B.

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

Bower, B. A.

Brenner, K.-H.

Büttner, L.

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Calluaud, D.

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

Campbell, M. C. W.

Cense, B.

Chatellier, L.

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

Chen, D. C.

Choi, H.

Choi, S.

Choi, W.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Cui, M.

R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Czarske, J.

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

da Silva, M. J.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Dasari, R. R.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

David, L.

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

Dimarzio, C. A.

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

Donnelly Iii, W.

Dreizler, A.

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

Elsinga, G. E.

G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[CrossRef]

Feld, M. S.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Fink, M.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Fiolka, R.

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

Friedrich, C.

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

Fu, M.

Gao, W.

Gomit, G.

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

Gordon, R. L.

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

Grundmann, S.

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

Ha, J.

Hampel, U.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Hebert, T. J.

Heeger, C.

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

Hillman, T. R.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Horstmeyer, R.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, J.

Jang, W.

Jones, S.

Jones, S. M.

Jonnal, R. S.

Judkewitz, B.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

König, J.

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

Kriegseis, J.

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

Kubby, J.

Lagendijk, A.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Laut, S.

Lee, S. D.

Lerosey, G.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Li, A.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Liang, J.

Lim, J.

Liu, H.

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Mathy, A.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Matsushima, K.

Miles, P. C.

Miller, D. T.

Mosk, A. P.

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

Müller, H.

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Neumann, M.

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

Oh, W. Y.

Olivier, S.

Olivier, S. S.

Park, J. H.

Park, Y.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Park, Y. K.

Qu, J.

Queener, H.

Razik, T.

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Rha, J.

Romero-Borja, F.

Roorda, A.

Sarro, P. M.

Scarano, F.

G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[CrossRef]

Schimmel, H.

Schleicher, E.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Si, K.

R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

Singer, W.

Tao, X.

Thiele, S.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Thorn, K. E.

Tschulik, K.

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

Uhlemann, M.

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

van Oudheusden, B. W.

G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[CrossRef]

Vdovin, G.

Wang, L. V.

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Wang, Y. M.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

Werner, J. S.

Williams, D. R.

Wollrab, E.

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

Wyrowski, F.

Xu, X.

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Yamauchi, T.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Yang, C.

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

Yaqoob, Z.

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Yu, H.

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Zuo, Y.

Anal. Chem. (1)

J.  König, K.  Tschulik, L.  Büttner, M.  Uhlemann, J.  Czarske, “Analysis of the Electrolyte Convection inside the Concentration Boundary Layer during Structured Electrodeposition of Copper in High Magnetic Gradient Fields,” Anal. Chem. 85(6), 3087–3094 (2013).
[CrossRef] [PubMed]

Appl. Opt. (3)

Exp. Fluids (2)

G.  Gomit, L.  Chatellier, D.  Calluaud, L.  David, “Free surface measurement by stereo-refraction,” Exp. Fluids 54(6), 1540 (2013).
[CrossRef]

G. E.  Elsinga, B. W.  van Oudheusden, F.  Scarano, “Evaluation of aero-optical distortion effects in PIV,” Exp. Fluids 39(2), 246–256 (2005).
[CrossRef]

Flow Turbul. Combus. (1)

B.  Böhm, C.  Heeger, R. L.  Gordon, A.  Dreizler, “New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics,” Flow Turbul. Combus. 86(3–4), 313–341 (2010).

J. Opt. Soc. Am. A (2)

J. Phys. D Appl. Phys. (1)

M.  Neumann, C.  Friedrich, J.  Czarske, J.  Kriegseis, S.  Grundmann, “Determination of the phase-resolved body force produced by a dielectric barrier discharge plasma actuator,” J. Phys. D Appl. Phys. 46(4), 042001 (2013).
[CrossRef]

Meas. Sci. Technol. (2)

E.  Schleicher, M. J.  da Silva, S.  Thiele, A.  Li, E.  Wollrab, U.  Hampel, “Design of an optical tomograph for the investigation of single- and two-phase pipe flows,” Meas. Sci. Technol. 19(9), 094006 (2008).
[CrossRef]

J.  Czarske, L.  Büttner, T.  Razik, H.  Müller, “Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution,” Meas. Sci. Technol. 13(12), 1979–1989 (2002).
[CrossRef]

Nat Commun (1)

Y. M.  Wang, B.  Judkewitz, C. A.  Dimarzio, C.  Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun 3, 928 (2012).
[CrossRef] [PubMed]

Nat. Photonics (4)

A. P.  Mosk, A.  Lagendijk, G.  Lerosey, M.  Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[CrossRef]

B.  Judkewitz, Y. M.  Wang, R.  Horstmeyer, A.  Mathy, C.  Yang, “Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE),” Nat. Photonics 7(4), 300–305 (2013).
[CrossRef] [PubMed]

K.  Si, R.  Fiolka, M.  Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[CrossRef] [PubMed]

X.  Xu, H.  Liu, L. V.  Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[CrossRef] [PubMed]

Opt. Express (6)

J.  Rha, R. S.  Jonnal, K. E.  Thorn, J.  Qu, Y.  Zhang, D. T.  Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[CrossRef] [PubMed]

A.  Roorda, F.  Romero-Borja, W.  Donnelly Iii, H.  Queener, T. J.  Hebert, M. C. W.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[CrossRef] [PubMed]

R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Y.  Zhang, B.  Cense, J.  Rha, R. S.  Jonnal, W.  Gao, R. J.  Zawadzki, J. S.  Werner, S.  Jones, S.  Olivier, D. T.  Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R.  Fiolka, K.  Si, M.  Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express 20(15), 16532–16543 (2012).
[CrossRef]

J.  Jang, J.  Lim, H.  Yu, H.  Choi, J.  Ha, J. H.  Park, W. Y.  Oh, W.  Jang, S. D.  Lee, Y. K.  Park, “Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography,” Opt. Express 21(3), 2890–2902 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Publ. Astron. Soc. Pac. (1)

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[CrossRef]

Sci Rep (1)

T. R.  Hillman, T.  Yamauchi, W.  Choi, R. R.  Dasari, M. S.  Feld, Y.  Park, Z.  Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci Rep 3, 1909 (2013).
[CrossRef] [PubMed]

Other (6)

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998).

R. Davies and M. Kasper, “Adaptive optics for astronomy,” Annu. Rev. Astrophys. 50, arXiv:1201.5741 (2012).

A. Sommerfeld, Mechanics of Deformable Bodies (Lectures on Theoretical Physics) (Academic, 1950).

R. K. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, 2010).

S. B. G. O’Brien and L. W. Schwartz, “Theory and modeling of thin film flows,” in Encyclopedia of Surface and Colloid Science (Taylor and Francis, 2002), pp. 5283–5297.

S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of the Mach-Zehnder interferometer setup of an LDV which is partly submerged in water (h: height of the water wave, nA: air refractive index, nW: water refractive index, LA: geometrical path length in air, LW: geometrical path length in water).

Fig. 2
Fig. 2

Characterisation of the water surface fluctuations for three different operation voltages of the pump. (a) Time signals and (b)-(d) corresponding spectra.

Fig. 3
Fig. 3

Experimental setup: Laser Doppler velocimeter with adaptive optics system implemented in one partial beam to correct for wavefront distortions. M: mirror, L: lens, BS: prism beam splitter, GP: glass plate, PH: pinhole, OC: optical chopper, HS-WFS: Hartmann-Shack wavefront sensor, DM: deformable mirror, WP: water pump, PC: personal computer.

Fig. 4
Fig. 4

Interference contrast (a) and rate of valid LDV signals (b) at threshold of 10% interference contrast in dependence of the mean amplitude (stroke) of the interface distortion.

Fig. 5
Fig. 5

Comparison of the measured and simulated mean validation rate in dependence of the mean amplitude of the water surface wave, i.e. the distortion. Three different orders of the Taylor series development of the surface height function are considered in the simulation.

Tables (2)

Tables Icon

Table 1 Classification of the optical distortions caused by the fluctuating air-water interface.

Tables Icon

Table 2 Steps of the simulation for calculating one interference fringe system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d(z)= λ 2sinθ [ 1+ z cos 2 θ( zcos 2 θ z w ) z R 2 cos 2 θ z w ( z cos 2 θ z w ) ],
h(x,t)= h( x 0 ,t) Stroke +(x x 0 ) h(x,t) x | x= x 0 Tilt + 1 2 (x x 0 ) 2 2 h(x,t) x 2 | x= x 0 Curvature +...,
V= I max I min I max + I min
k z = ( 2πn λ ) 2 k x 2 k y 2

Metrics