Abstract

Eu ions in situ doped in GaN with V/III ratios varying from 3200 to 9600 have been investigated using resonant site-selective photoluminescence (PL), power dependent cathodoluminescence (CL), and a unique electron beam power dependent dual excitation experiment combining the techniques of PL and CL. The results of these experiments reveal the role of defects in the electronic excitation of Eu ions and the link between the GaN host and Eu ion dopants. The relative number of beneficial defects present in each sample for a majority Eu site (Eu1) and a specific secondary site (Eu2) are revealed. Also, a room temperature activated non-radiative recombination pathway linked to a specific, sample dependent Eu2 excitation pathway is identified. Unlike conventional GaN LEDs, Eu:GaN device performance does not rely completely on crystalline quality, but on the presence of specific excitation enhancing defects and the absence of non-radiative de-excitation channels.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
    [CrossRef]
  2. A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).
  3. A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
    [CrossRef]
  4. A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
    [CrossRef]
  5. A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
    [CrossRef]
  6. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
    [CrossRef]
  7. V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.
  8. D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
    [CrossRef]
  9. J. Poplawsky and V. Dierolf, “High-resolution confocal microscopy with simultaneous electron and laser beam irradiation,” Microsc. Microanal.18(6), 1263–1269 (2012).
    [CrossRef] [PubMed]
  10. N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
    [CrossRef]
  11. J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).
  12. I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
    [CrossRef]
  13. N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
    [CrossRef]
  14. P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
    [CrossRef] [PubMed]

2012 (2)

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

J. Poplawsky and V. Dierolf, “High-resolution confocal microscopy with simultaneous electron and laser beam irradiation,” Microsc. Microanal.18(6), 1263–1269 (2012).
[CrossRef] [PubMed]

2011 (4)

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

2010 (4)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

2009 (1)

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

2008 (1)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

1995 (1)

P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
[CrossRef] [PubMed]

Alves, E.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Bernholc, J.

P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
[CrossRef] [PubMed]

Bockowski, M.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Boguslawski, P.

P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
[CrossRef] [PubMed]

Briggs, E. L.

P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
[CrossRef] [PubMed]

Dahal, R.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

Dierolf, V.

J. Poplawsky and V. Dierolf, “High-resolution confocal microscopy with simultaneous electron and laser beam irradiation,” Microsc. Microanal.18(6), 1263–1269 (2012).
[CrossRef] [PubMed]

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Edwards, P.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Fleischman, Z.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Fujiwara, T.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Fujiwara, Y.

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

Furukawa, N.

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

Jiang, H. X.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

Kawabata, K.

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

Kawasaki, T.

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

Lee, D.

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

Lee, D.-G.

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

Lin, J. Y.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

Lorenz, K.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Martin, R.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Matsuno, T.

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

Mitchell, B.

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

Munasinghe, C.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Nishikawa, A.

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

O'Donnell, K.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Poplawsky, J.

J. Poplawsky and V. Dierolf, “High-resolution confocal microscopy with simultaneous electron and laser beam irradiation,” Microsc. Microanal.18(6), 1263–1269 (2012).
[CrossRef] [PubMed]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

Roqan, I.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Sandmann, C.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Song, S.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Steckl, A.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Terai, Y.

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

Ugolini, C.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

Vantomme, A.

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Wakahara, A.

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Woodward, N.

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

Zavada, J. M.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

Appl. Phys. Express (1)

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Room-temperature red emission from a p-type/europium-doped/n-type gallium nitride light-emitting diode under current injection,” Appl. Phys. Express2, 071004 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Current-injected 1.54 μm light emitting diodes based on erbium-doped GaN,” Appl. Phys. Lett.93(3), 033502 (2008).
[CrossRef]

D.-G. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, “Eu luminescence center created by Mg codoping in Eu-doped GaN,” Appl. Phys. Lett.100(17), 171904 (2012).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN pin junctions,” Appl. Phys. Lett.97(14), 141109 (2010).
[CrossRef]

A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, “Improved luminescence properties of Eu-doped GaN light-emitting diodes grown by atmospheric-pressure organometallic vapor phase epitaxy,” Appl. Phys. Lett.97(5), 051113 (2010).
[CrossRef]

N. Woodward, J. Poplawsky, B. Mitchell, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center,” Appl. Phys. Lett.98(1), 011102 (2011).
[CrossRef]

Microsc. Microanal. (1)

J. Poplawsky and V. Dierolf, “High-resolution confocal microscopy with simultaneous electron and laser beam irradiation,” Microsc. Microanal.18(6), 1263–1269 (2012).
[CrossRef] [PubMed]

MRS Proc. (2)

A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based light-emitting diodes grown by organometallic vapor phase epitaxy,” MRS Proc.1342, 9–14 (2011).

J. Poplawsky, N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Nature and excitation mechanism of the emission-dominating minority Eu-center in GaN grown by organometallic vapor-phase epitaxy,” MRS Proc.1342, 21–26 (2011).

Opt. Mater. (1)

N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, “Site and sample dependent electron–phonon coupling of Eu ions in epitaxial-grown GaN layers,” Opt. Mater.33(7), 1050–1054 (2011).
[CrossRef]

Phys. Rev. B (1)

I. Roqan, K. O'Donnell, R. Martin, P. Edwards, S. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Boćkowski, “Identification of the prime optical center in GaN: Eu3+,” Phys. Rev. B81(8), 085209 (2010).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

P. Boguslawski, E. L. Briggs, and J. Bernholc, “Native defects in gallium nitride,” Phys. Rev. B Condens. Matter51(23), 17255–17258 (1995).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, “Electroluminescence properties of Eu-doped GaN-based red light-emitting diode by OMVPE,” Phys. Status Solidi207(6), 1397–1399 (2010).
[CrossRef]

Other (1)

V. Dierolf, Z. Fleischman, C. Sandmann, A. Wakahara, T. Fujiwara, C. Munasinghe, and A. Steckl, “Combined excitation emission spectroscopy of europium ions in GaN and AlGaN films,” in MRS Proc. 866 (2005), V3.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(left) A schematic of the CELB apparatus built for this experiment. (right) The CELB apparatus as it sits on an Oxford low temperature stage to be inserted into a JEOL6400 SEM. The fiber closest to the camera (1) is a 3.5 µm fiber that guides laser light to the microscope. This fiber is attached to a Thorlabs fiberport, which collimates and directs the beam into a beam splitter (2). The beam splitter reflects the light in the direction of two mirrors (3) that guide the collimated beam through an objective lens (4), which then focuses the beam onto a sample. The light emitted by the sample, resulting from either laser or electron beam excitation, is collected and collimated by the objective lens (4). The collimated light is directed through the beam splitter by the two mirrors (3) and coupled into a 6 µm collection fiber (5) by a Thorlabs fiberport coupler.

Fig. 2
Fig. 2

The total integrated CL intensity as a function of e-beam current for a 1.80 - 2.25 eV emission at room temperature. A 10 kV accelerating voltage and a 35 µm spot size was used to excite the entire volume of the Eu:GaN layer defined by the collection of the confocal microscope.

Fig. 3
Fig. 3

The CEES maps for GaN320, GaN640, and GaN960.

Fig. 4
Fig. 4

The comparison of the Eu concentrations to the Eu1 phonon-assisted resonant PL intensities and the room temperature total integrated CL intensities to the Eu2 phonon-assisted resonant PL intensities for the samples in this study.

Fig. 5
Fig. 5

The decrease in CL emission with additional below band gap laser excitation (2.16 eV) as a function of the e-beam current. The solid lines are curves fit to the CL emission subtracted from the CL emission with additional laser excitation data using Eq. (1).

Fig. 6
Fig. 6

The comparison of the relative number of Eu1 EEDs to the room temperature total integrated CL intensities and the relative number of Eu2 EEDs to the Eu2 resonant phonon-assisted PL intensities for the three samples in this study. The relative numbers of EEDs were calculated by applying Eq. (1) to the data shown in Fig. 5.

Fig. 7
Fig. 7

The TRCL data collected from GaN320, GaN640, and GaN960 at room and low temperature. The Eu emission decay is much faster for GaN320 at room temperature than the other samples and exhibits a double exponential decay.

Tables (1)

Tables Icon

Table 1 Relative Values for NEED and kexc

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔCL(I)=A k ion τ Eu 1 k exc I ( k exc I+ k ion + τ Eu 1 )( k exc I+ τ Eu 1 ) N EED .

Metrics