Abstract

The Laser-Induced Damage Threshold (LIDT) and damage morphologies of a Ta2O5/SiO2 double cavity filter irradiated by 1064-nm, 10-ns pulses were investigated. The depths of flat bottom pits were examined by an optical profiler and then calibrated according to the Electric-Field Intensity (EFI) distributions and the cross-sectional micrographs obtained using the Focus Ion Beam (FIB) technology. The statistics for depths of 60 damage sites suggested that the Ta2O5 over SiO2 interface was more vulnerable to Laser-Induced Damage (LID) than the SiO2 over Ta2O5 interface. After examining the morphologies of interfacial delaminations carefully, we found that the Ta2O5 over SiO2 interface instead had stronger mechanical strength. So, the higher density of susceptible defects at the Ta2O5 over SiO2 interface was considered to be the reason that LID was preferentially initiated at this type of interface. Based on the above findings, a phenomenological model was proposed to describe the formation of flat bottom pits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. McInnes and C. M. Macdonald, “Investigation and modeling of laser damage properties of Fabry-Perot filters,” Proc. SPIE 1438, 471–482 (1989).
  2. H. Y. Hu, Z. X. Fan, and F. Luo, “Laser-induced damage of a 1064-nm ZnS/MgF2 narrow-band interference filter,” Appl. Opt. 40(12), 1950–1956 (2001).
    [Crossref] [PubMed]
  3. W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
    [Crossref]
  4. Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
    [Crossref]
  5. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
    [Crossref]
  6. X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
    [Crossref]
  7. C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
    [Crossref]
  8. J. Bellum, D. Kletecka, P. Rambo, I. Smith, J. Schwarz, and B. Atherton, “Comparisons between laser damage and optical electric field behaviors for hafnia/silica antireflection coatings,” Appl. Opt. 50(9), C340–C348 (2011).
    [Crossref] [PubMed]
  9. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
    [Crossref]
  10. Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
    [Crossref]
  11. J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
    [Crossref]
  12. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
    [Crossref]
  13. H. F. Jiao, X. B. Cheng, G. H. Bao, J. Han, J. L. Zhang, Z. S. Wang, M. K. Trubetskov, and A. V. Tikhonravov, “Study of the HfO2/SiO2 dichroic laser mirrors having refractive index inhomogeneity,” Appl. Opt. 53(4), A56–A61 (2014).
    [Crossref]
  14. Y. Wang, H. H. He, Y. A. Zhao, Y. G. Shan, D. W. Li, and C. Y. Wei, “Single- and multi-shot laser-induced damages of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9(2), 023103 (2011).
  15. J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, and Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
    [Crossref] [PubMed]
  16. S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
    [Crossref]
  17. B. Fan, M. Suzuki, and K. Tang, “Ion-assisted deposition of TiO2/SiO2 multilayers for mass production,” Appl. Opt. 45(7), 1461–1464 (2006).
    [Crossref] [PubMed]
  18. X. B. Cheng, H. F. Jiao, J. L. Lu, B. Ma, and Z. S. Wang, “Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface,” Opt. Express 21(12), 14867–14875 (2013).
    [Crossref] [PubMed]
  19. M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
    [Crossref]
  20. T. Yamaguchi, H. Tamura, S. Taga, and S. Tsuchiya, “Interfacial optical absorption in TiO2-SiO2 multilayer coatings prepared by rf magnetron sputtering,” Appl. Opt. 25(16), 2703–2706 (1986).
    [Crossref] [PubMed]
  21. E. Welsch and D. Ristau, “Photothermal measurements on optical thin films,” Appl. Opt. 34(31), 7239–7253 (1995).
    [Crossref] [PubMed]
  22. Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
    [Crossref]
  23. J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
    [Crossref]
  24. M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
    [Crossref]
  25. P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
    [Crossref]
  26. C. Y. Wei, J. D. Shao, H. H. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

X. B. Cheng, H. F. Jiao, J. L. Lu, B. Ma, and Z. S. Wang, “Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface,” Opt. Express 21(12), 14867–14875 (2013).
[Crossref] [PubMed]

J. L. Zhang, A. V. Tikhonravov, M. K. Trubetskov, Y. L. Liu, X. B. Cheng, and Z. S. Wang, “Design and fabrication of ultra-steep notch filters,” Opt. Express 21(18), 21523–21529 (2013).
[Crossref] [PubMed]

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

2012 (1)

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

2011 (3)

2010 (1)

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

2008 (3)

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[Crossref]

C. Y. Wei, J. D. Shao, H. H. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[Crossref] [PubMed]

2007 (1)

M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
[Crossref]

2006 (1)

2004 (1)

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

2003 (1)

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

2001 (1)

1999 (2)

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
[Crossref]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

1998 (1)

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

1995 (1)

1994 (1)

M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
[Crossref]

1989 (1)

A. McInnes and C. M. Macdonald, “Investigation and modeling of laser damage properties of Fabry-Perot filters,” Proc. SPIE 1438, 471–482 (1989).

1986 (1)

1978 (1)

Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
[Crossref]

André, B.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
[Crossref]

Atherton, B.

Bao, G. H.

Bellum, J.

Bercegol, H.

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

Bevis, R. P.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Caputo, M.

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

Cheng, X. B.

Cheng, X. G.

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Danileiko, Y. K.

Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
[Crossref]

Dijon, J.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
[Crossref]

Fan, B.

Fan, Z. X.

C. Y. Wei, J. D. Shao, H. H. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[Crossref] [PubMed]

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

H. Y. Hu, Z. X. Fan, and F. Luo, “Laser-induced damage of a 1064-nm ZnS/MgF2 narrow-band interference filter,” Appl. Opt. 40(12), 1950–1956 (2001).
[Crossref] [PubMed]

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

Gao, W. D.

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

Griffin, A. J.

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

Grigonis, M.

M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
[Crossref]

Grua, P.

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

Han, J.

Han, Y.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

He, H. H.

Hebenstreit, W.

M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
[Crossref]

Hu, H. Y.

Huang, L. J.

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Ji, Y. Q.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Jiao, H. F.

Jonusauskas, G.

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

Kletecka, D.

Koldunov, M. F.

M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
[Crossref]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Li, D. W.

Li, H. Q.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Liu, H. S.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Liu, Y. L.

Liu, Z. J.

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Lu, J. L.

Lu, J. T.

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Luo, F.

Ma, B.

Macdonald, C. M.

A. McInnes and C. M. Macdonald, “Investigation and modeling of laser damage properties of Fabry-Perot filters,” Proc. SPIE 1438, 471–482 (1989).

Manenkov, A. A.

M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
[Crossref]

Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
[Crossref]

McInnes, A.

A. McInnes and C. M. Macdonald, “Investigation and modeling of laser damage properties of Fabry-Perot filters,” Proc. SPIE 1438, 471–482 (1989).

Morreeuw, J.

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

Nechitailo, V. S.

Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
[Crossref]

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[Crossref]

Pocotilo, I. L.

M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
[Crossref]

Rambo, P.

Ravel, G.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
[Crossref]

Ristau, D.

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[Crossref]

Schwarz, J.

Shan, Y. G.

Shao, J. D.

C. Y. Wei, J. D. Shao, H. H. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[Crossref] [PubMed]

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

Smith, I.

Stolz, C. J.

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

Suzuki, M.

Taga, S.

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

Tamura, H.

Tang, K.

Tao, D.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Thomas, M. D.

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

Thomsen, M.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

Tikhonravov, A. V.

Tilsch, M. K.

M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
[Crossref]

Trubetskov, M. K.

Tsuchiya, S.

Vallée, F.

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

von Gunten, M. K.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

Wang, Y.

Wang, Z. S.

Weakley, S. C.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

Wei, C. Y.

Wei, Z. Y.

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Welsch, E.

Wu, Z. L.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

Xu, Z. J.

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Yamaguchi, T.

Yi, K.

Zhang, J. L.

Zhao, Q.

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

Zhao, Y. A.

Y. Wang, H. H. He, Y. A. Zhao, Y. G. Shan, D. W. Li, and C. Y. Wei, “Single- and multi-shot laser-induced damages of Ta2O5/SiO2 dielectric mirrors at 1064 nm,” Chin. Opt. Lett. 9(2), 023103 (2011).

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

Zhu, Z. W.

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Appl. Opt. (6)

Appl. Phys. A Mater. Sci. Process. (1)

Z. W. Zhu, X. G. Cheng, Z. J. Xu, L. J. Huang, and Z. J. Liu, “Wavelength dependent damage thresholds of a bandpass filter under femtosecond laser irradiation,” Appl. Phys. A Mater. Sci. Process. 111(4), 1091–1098 (2013).
[Crossref]

Chin. Opt. Lett. (1)

J. Appl. Phys. (2)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys. 109(11), 113106 (2011).
[Crossref]

S. Papernov and A. W. Schmid, “Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO2 thin-film matrix subjected to UV pulsed-laser radiation,” J. Appl. Phys. 104(6), 063101 (2008).
[Crossref]

Light Sci. Appl. (1)

X. B. Cheng, J. L. Zhang, D. Tao, Z. Y. Wei, H. Q. Li, and Z. S. Wang, “The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses,” Light Sci. Appl. 2(6), e80 (2013).
[Crossref]

Opt. Eng. (1)

J. T. Lu, X. B. Cheng, Z. S. Wang, H. S. Liu, and Y. Q. Ji, “Separation of interface and volume absorption in HfO2 single layers,” Opt. Eng. 51(12), 121814 (2012).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

P. Grua, J. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron kinetics and emission for metal nanoparticles exposed to intense laser pulses,” Phys. Rev. B 68(3), 035424 (2003).
[Crossref]

Proc. SPIE (8)

M. F. Koldunov, A. A. Manenkov, and I. L. Pocotilo, “Theory of laser-induced damage to optical coatings: Inclusion initiated thermal explosion mechanism,” Proc. SPIE 2114, 469–487 (1994).
[Crossref]

Q. Zhao, Z. L. Wu, M. Thomsen, Y. Han, and Z. X. Fan, “Interfacial effects on the transient temperature rise of multilayer coatings induced by a short-pulse laser irradiation,” Proc. SPIE 3244, 491–498 (1998).
[Crossref]

A. McInnes and C. M. Macdonald, “Investigation and modeling of laser damage properties of Fabry-Perot filters,” Proc. SPIE 1438, 471–482 (1989).

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1999).
[Crossref]

C. J. Stolz, M. Caputo, A. J. Griffin, and M. D. Thomas, “BDS thin film UV antireflection laser damage competition,” Proc. SPIE 7842, 784206 (2010).
[Crossref]

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, and M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multilayer coatings,” Proc. SPIE 3578, 137–143 (1999).
[Crossref]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[Crossref]

W. D. Gao, H. H. He, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “The LIDT of Ta2O5/SiO2 narrow-band interference filters under different laser modes,” Proc. SPIE 5774, 498–501 (2004).
[Crossref]

Sov. J. Quantum Electron. (1)

Y. K. Danileĭko, A. A. Manenkov, and V. S. Nechitailo, “The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities,” Sov. J. Quantum Electron. 8(1), 116–118 (1978).
[Crossref]

Thin Solid Films (1)

M. Grigonis, W. Hebenstreit, and M. K. Tilsch, “Near-interfacial delamination failures observed in ion-beam-sputtered Ta2O5/SiO2 multilayer,” Thin Solid Films 516(2–4), 136–140 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectral performance and EFI distributions of two Ta2O5/SiO2 double cavity filters using Ta2O5 and SiO2 spacer layers respectively.

Fig. 2
Fig. 2

The sensitivity of EFI distributions on incident angles for the air-film aside and substrate-film side irradiations.

Fig. 3
Fig. 3

A comparison between the theoretical and measured transmittance curves of the Ta2O5/SiO2 double cavity filter using SiO2 spacer layers.

Fig. 4
Fig. 4

The top-view and cross-sectional micrographs of the four damage sites. The shallow flat bottom pits were created by the air-film side laser irradiation and the deeper flat bottom pits were created by the substrate-film side laser irradiation.

Fig. 5
Fig. 5

The depth distributions at which the LID was initiated for the air-film aside and substrate-film side irradiations.

Fig. 6
Fig. 6

Damage morphologies at the border of flat bottom pits revealing that mechanical delaminations initiated from the SiO2 over Ta2O5 interfaces.

Fig. 7
Fig. 7

TEM micrographs showing the microstructure of two types of interfaces in a very thin Ta2O5/SiO2 multilayer.

Fig. 8
Fig. 8

Schematic presentation of the proposed phenomenological model to describe the formation of the flat bottom pit.

Tables (1)

Tables Icon

Table 1 Depth at which strong EFI peaks form and the LID is probably initiated

Metrics