Abstract

To overcome speed of sound aberrations that negatively impact the acoustic focus in acousto-optic imaging, received photoacoustic signals are used to guide the formation of ultrasound wavefronts to compensate for acoustic inhomogeneities. Photoacoustic point sources composed of gold and superparamagnetic iron oxide nanoparticles are used to generate acoustic waves that acoustically probe the medium as they propagate to the detector. By utilizing cross-correlation techniques with the received photoacoustic signal, transmitted ultrasound wavefronts compensate for the aberration, allowing for optimized and configurable ultrasound transmission to targeted locations. It is demonstrated that utilizing a portable commercially available ultrasound system using customized software, photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging is robust in the presence of large, highly attenuating acoustic aberration.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
    [CrossRef] [PubMed]
  2. L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  3. M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
    [CrossRef] [PubMed]
  4. P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
    [PubMed]
  5. L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
    [CrossRef] [PubMed]
  6. G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
    [CrossRef] [PubMed]
  7. G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
    [CrossRef] [PubMed]
  8. G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
    [PubMed]
  9. V. Behar, “Techniques for phase correction in coherent ultrasound imaging systems,” Ultrasonics39(9), 603–610 (2002).
    [CrossRef] [PubMed]
  10. E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
    [CrossRef]
  11. D. Cassereau and M. Fink, “Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 579–592 (1992).
    [CrossRef] [PubMed]
  12. M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 555–566 (1992).
    [CrossRef] [PubMed]
  13. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006).
    [CrossRef] [PubMed]
  14. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
    [CrossRef] [PubMed]
  15. R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound-speed inhomogeneities - the Vancittert-Zernike approach and focusing criterion,” J. Acoust. Soc. Am.96(6), 3721–3732 (1994).
    [CrossRef]
  16. S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
    [CrossRef] [PubMed]
  17. M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
    [CrossRef] [PubMed]
  18. F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
    [CrossRef] [PubMed]
  19. K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express20(13), 14117–14129 (2012).
    [CrossRef] [PubMed]
  20. D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).
  21. D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
    [PubMed]
  22. S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
    [CrossRef] [PubMed]
  23. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
    [CrossRef] [PubMed]
  24. G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
    [CrossRef] [PubMed]
  25. S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control35(6), 758–767 (1988).
    [CrossRef] [PubMed]

2013

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

2012

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express20(13), 14117–14129 (2012).
[CrossRef] [PubMed]

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

2011

S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
[CrossRef] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

2006

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

2003

S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
[CrossRef] [PubMed]

M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
[CrossRef] [PubMed]

2002

V. Behar, “Techniques for phase correction in coherent ultrasound imaging systems,” Ultrasonics39(9), 603–610 (2002).
[CrossRef] [PubMed]

2000

M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
[CrossRef] [PubMed]

1997

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

1995

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

1994

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound-speed inhomogeneities - the Vancittert-Zernike approach and focusing criterion,” J. Acoust. Soc. Am.96(6), 3721–3732 (1994).
[CrossRef]

1992

F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
[CrossRef] [PubMed]

D. Cassereau and M. Fink, “Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 579–592 (1992).
[CrossRef] [PubMed]

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 555–566 (1992).
[CrossRef] [PubMed]

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

1991

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

1988

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control35(6), 758–767 (1988).
[CrossRef] [PubMed]

1973

G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
[CrossRef] [PubMed]

Anderson, M. E.

M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
[CrossRef] [PubMed]

Angelsen, B.

S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
[CrossRef] [PubMed]

Aubry, J.-F.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Behar, V.

V. Behar, “Techniques for phase correction in coherent ultrasound imaging systems,” Ultrasonics39(9), 603–610 (2002).
[CrossRef] [PubMed]

Boccara, A. C.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
[CrossRef] [PubMed]

Boccara, A.-C.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Bossy, E.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Cassereau, D.

D. Cassereau and M. Fink, “Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 579–592 (1992).
[CrossRef] [PubMed]

Daoudi, K.

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express20(13), 14117–14129 (2012).
[CrossRef] [PubMed]

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Fink, M.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound-speed inhomogeneities - the Vancittert-Zernike approach and focusing criterion,” J. Acoust. Soc. Am.96(6), 3721–3732 (1994).
[CrossRef]

F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
[CrossRef] [PubMed]

D. Cassereau and M. Fink, “Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 579–592 (1992).
[CrossRef] [PubMed]

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 555–566 (1992).
[CrossRef] [PubMed]

Flax, S. W.

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control35(6), 758–767 (1988).
[CrossRef] [PubMed]

Fratila, R. M.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Freiburger, P. D.

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

Fry, E. K.

G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
[CrossRef] [PubMed]

Grootendorst, D. J.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

Groothuis, T. A. M.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Haken, B. T.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Hinkelman, L. M.

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

Hondebrink, E.

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Hussain, A.

Janssen, H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Jellins, J.

G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
[CrossRef] [PubMed]

Jin, X.

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

Johansen, T. F.

S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
[CrossRef] [PubMed]

Jose, J.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

Kooyman, R. P. H.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Kossoff, G.

G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
[CrossRef] [PubMed]

Kroes, R.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

LeBlanc, B. H.

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

Liu, D. L.

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

Mallart, R.

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound-speed inhomogeneities - the Vancittert-Zernike approach and focusing criterion,” J. Acoust. Soc. Am.96(6), 3721–3732 (1994).
[CrossRef]

Manohar, S.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
[CrossRef] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Måsøy, S. E.

S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
[CrossRef] [PubMed]

Mast, T. D.

M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
[CrossRef] [PubMed]

McKeag, M. S.

M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
[CrossRef] [PubMed]

Montaldo, G.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Ng, G.

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

Ng, G. C.

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

Nock, L. F.

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

O’Donnell, M.

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control35(6), 758–767 (1988).
[CrossRef] [PubMed]

Petersen, W.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Resink, S. G.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
[CrossRef] [PubMed]

Rottenberg, S.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Ruers, T. J.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

Ruers, T. J. M.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Slump, C. H.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

Smith, S. W.

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

Steenbergen, W.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

K. Daoudi, A. Hussain, E. Hondebrink, and W. Steenbergen, “Correcting photoacoustic signals for fluence variations using acousto-optic modulation,” Opt. Express20(13), 14117–14129 (2012).
[CrossRef] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
[CrossRef] [PubMed]

Steinberg, B. D.

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

Sullivan, D. C.

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

Tabei, M.

M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
[CrossRef] [PubMed]

Tanter, M.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Ten Haken, B.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

Thomas, J. L.

F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
[CrossRef] [PubMed]

Trahey, G. E.

M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
[CrossRef] [PubMed]

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

Ungureanu, C.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
[CrossRef] [PubMed]

Ungureanu, F.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

van Leeuwen, F. W. B.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Van Leeuwen, T. G.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
[CrossRef] [PubMed]

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

van Wezel, R. J. A.

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Velders, A. H.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

Visscher, M.

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Waag, R. C.

M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
[CrossRef] [PubMed]

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

Walker, W. F.

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

Willemink, R. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

Wu, F.

F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
[CrossRef] [PubMed]

Zhu, Q.

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. Bossy, K. Daoudi, A.-C. Boccara, M. Tanter, J.-F. Aubry, G. Montaldo, and M. Fink, “Time reversal of photoacoustic waves,” Appl. Phys. Lett.89(18), 184108 (2006).
[CrossRef]

Contrast Media Mol. Imaging

D. J. Grootendorst, J. Jose, R. M. Fratila, M. Visscher, A. H. Velders, B. Ten Haken, T. G. Van Leeuwen, W. Steenbergen, S. Manohar, and T. J. Ruers, “Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging,” Contrast Media Mol. Imaging8(1), 83–91 (2013).
[PubMed]

S. Manohar, C. Ungureanu, and T. G. Van Leeuwen, “Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats,” Contrast Media Mol. Imaging6(5), 389–400 (2011).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

G. C. Ng, P. D. Freiburger, W. F. Walker, and G. E. Trahey, “A speckle target adaptive imaging technique in the presence of distributed aberrations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 140–151 (1997).
[CrossRef] [PubMed]

S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control35(6), 758–767 (1988).
[CrossRef] [PubMed]

D. Cassereau and M. Fink, “Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 579–592 (1992).
[CrossRef] [PubMed]

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 555–566 (1992).
[CrossRef] [PubMed]

F. Wu, J. L. Thomas, and M. Fink, “Time reversal of ultrasonic fields. Il. Experimental results,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(5), 567–578 (1992).
[CrossRef] [PubMed]

Invest. Radiol.

G. E. Trahey, P. D. Freiburger, G. Ng, and D. C. Sullivan, “The impact of acoustic velocity variations on target detectability in ultrasonic images of the breast,” Invest. Radiol.26(9), 782–791 (1991).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

L. M. Hinkelman, D. L. Liu, R. C. Waag, Q. Zhu, and B. D. Steinberg, “Measurement and correction of ultrasonic pulse distortion produced by the human breast,” J. Acoust. Soc. Am.97(3), 1958–1969 (1995).
[CrossRef] [PubMed]

G. Kossoff, E. K. Fry, and J. Jellins, “Average velocity of ultrasound in the human female breast,” J. Acoust. Soc. Am.53(6), 1730–1736 (1973).
[CrossRef] [PubMed]

M. E. Anderson, M. S. McKeag, and G. E. Trahey, “The impact of sound speed errors on medical ultrasound imaging,” J. Acoust. Soc. Am.107(6), 3540–3548 (2000).
[CrossRef] [PubMed]

R. Mallart and M. Fink, “Adaptive focusing in scattering media through sound-speed inhomogeneities - the Vancittert-Zernike approach and focusing criterion,” J. Acoust. Soc. Am.96(6), 3721–3732 (1994).
[CrossRef]

S. E. Måsøy, T. F. Johansen, and B. Angelsen, “Correction of ultrasonic wave aberration with a time delay and amplitude filter,” J. Acoust. Soc. Am.113(4), 2009–2020 (2003).
[CrossRef] [PubMed]

M. Tabei, T. D. Mast, and R. C. Waag, “Simulation of ultrasonic focus aberration and correction through human tissue,” J. Acoust. Soc. Am.113(2), 1166–1176 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. G. Resink, A. C. Boccara, and W. Steenbergen, “State-of-the art of acousto-optic sensing and imaging of turbid media,” J. Biomed. Opt.17(4), 040901 (2012).
[CrossRef] [PubMed]

J. Biophotonics

D. J. Grootendorst, R. M. Fratila, M. Visscher, B. T. Haken, R. J. A. van Wezel, S. Rottenberg, W. Steenbergen, S. Manohar, and T. J. M. Ruers, “Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion,” J. Biophotonics6(6–7), 493–504 (2013).

Med. Phys.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys.39(12), 7262–7271 (2012).
[CrossRef] [PubMed]

Nano Lett.

C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, “Light interactions with gold nanorods and cells: Implications for photothermal nanotherapeutics,” Nano Lett.11(5), 1887–1894 (2011).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol.51(24), 6437–6448 (2006).
[CrossRef] [PubMed]

Science

L. V. Wang and S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Ultrason. Imaging

P. D. Freiburger, D. C. Sullivan, B. H. LeBlanc, S. W. Smith, and G. E. Trahey, “Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects,” Ultrason. Imaging14(4), 398–414 (1992).
[PubMed]

G. E. Trahey, P. D. Freiburger, L. F. Nock, and D. C. Sullivan, “In vivo measurements of ultrasonic beam distortion in the breast,” Ultrason. Imaging13(1), 71–90 (1991).
[PubMed]

Ultrasonics

V. Behar, “Techniques for phase correction in coherent ultrasound imaging systems,” Ultrasonics39(9), 603–610 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized absorption spectrum of the photoacoustic contrast agents. (a) Absorption spectrum of the gold nanospheres and gold nanorods. (b) Absorption spectrum of SPIOs.

Fig. 2
Fig. 2

Diagram of hydrophone measured ultrasound focus experimental setup. UA: ultrasound array, PS: phase screen, NT: nylon thread, NH: needle hydrophone, FG1: function generator: M1: mirror.

Fig. 3
Fig. 3

Schematic of the PA and AO experimental setup. UA: ultrasound array, PS: phase screen, CA: contrast agent, FG1,FG2: function generator, AOM: acousto-optic modulator, M1: mirror, M2: flipping mirror, LT: lens tube.

Fig. 4
Fig. 4

The maximum signal amplitude (normalized relative to PA guided focus) as a function of scanning distance across the hydrophone. (a) Focus profile generated by the unguided (red) and PA guided focus (blue) without phase screen. (b) Focus profile generated by unguided (red) and PA guided focus (blue) with phase screen, and unguided focus without phase screen (black) as reference.

Fig. 5
Fig. 5

Normalized AO measurement using unguided and PA guided ultrasound focus targeting a 2mm diameter bead of gold nanospheres. ΔC from unguided focus (red) and PA guided focus (blue) without phase screen. ΔC from unguided focus (black) and PA guided focus (green) in the presence of the phase screen.

Fig. 6
Fig. 6

Normalized AO measurement targeting a sodium alginate bead containing PA contrast agent(s). (a) 1 mm diameter bead containing GNS and GNR, (blue) ΔC from PA guided focus without phase screen, and (red) ΔC from PA guided focus with phase screen. (b) 2mm diameter bead containing SPIOs, (blue) ΔC from PA guided focus without phase screen, and (red) ΔC from PA guided focus with phase screen.

Fig. 7
Fig. 7

Anatomical, ultrasound and AO image highlighting the heterogeneity of the pork tissue sample and the impact acoustic variations have on ultrasound and AO imaging. (a) 1.5x3.0x3.0 cm pork sample containing a 1 mm diameter sodium alginate bead composed of SPIOs embedded in the middle of the sample. (b) Ultrasound B-mode image of the sample after the ultrasound probe was aligned and fixed in position. (c) ΔC comparison from PA guided and unguided ultrasound focus used in the AO measurements.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p i (t)=s( t τ i )
{ s(t τ i ) }= P aber,i =S(f)exp[j2πf τ i ], S(f)={ s(t) }
Cor r i , i+1 (k)= m=M/2 M/21 P aber,i (m T s )P * aber,i+1 ((m+k) T s )
Cor r i (k)= m=M/2 M/21 P aber,n+1 (m T s )P * aber,i ((m+k) T s ) , i=1,...,n,n+2,...,N

Metrics