Abstract

Amplification and detection characteristics of mid-infrared quantum cascade lasers (QCLs) are studied. The QCL amplifier has an adjustable bandwidth and tunable gain peak to function as a tunable mid-IR filter. By biasing the QCL slightly below its threshold, we demonstrated more than 11dB optical gain and over 28dB electrical gain at specified wavelengths. In the electrical gain measurement process, the resonant amplifier also functioned as a detector. Mid-IR amplification and detection can be achieved using the same material for the laser source. This indicates that intersubband based gain materials can be ideal candidates for mid-IR photonic integrations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
    [CrossRef]
  3. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express12(9), 1879–1884 (2004).
    [CrossRef] [PubMed]
  4. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
    [CrossRef]
  5. X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
    [CrossRef] [PubMed]
  6. R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005).
    [CrossRef]
  7. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
    [CrossRef]
  8. T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
    [CrossRef]
  9. H. Nakajima, “High-speed and high gain optical amplifying photodetection in a semiconductor laser amplifier,” Appl. Phys. Lett.54(11), 984–986 (1989).
    [CrossRef]
  10. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
    [CrossRef] [PubMed]
  11. D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002).
    [CrossRef]
  12. X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
    [CrossRef]
  13. B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
    [CrossRef]
  14. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
    [CrossRef]
  15. F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991).
    [CrossRef]
  16. J. von Staden, T. Gensty, W. Elsässer, G. Giuliani, and C. Mann, “Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique,” Opt. Lett.31(17), 2574–2576 (2006).
    [CrossRef] [PubMed]
  17. C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
    [CrossRef]
  18. L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
    [CrossRef]
  19. X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
    [CrossRef]
  20. M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
    [CrossRef]

2012

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

2011

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
[CrossRef] [PubMed]

2009

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

2008

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

2006

2005

R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005).
[CrossRef]

2004

2002

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002).
[CrossRef]

2001

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

1997

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1991

F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991).
[CrossRef]

1989

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

H. Nakajima, “High-speed and high gain optical amplifying photodetection in a semiconductor laser amplifier,” Appl. Phys. Lett.54(11), 984–986 (1989).
[CrossRef]

1982

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

Andrews, A. M.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Baumgartner, O.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Beck, M.

Burrus, C. A.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Capasso, F.

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chen, X.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
[CrossRef] [PubMed]

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

Cheng, L.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
[CrossRef] [PubMed]

Cho, A. Y.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Choa, F. S.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991).
[CrossRef]

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

Choa, F.-S.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
[CrossRef] [PubMed]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Darmo, J.

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Debbage, P.

Detz, H.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Diehl, L.

Elsässer, W.

Faist, J.

J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express12(9), 1879–1884 (2004).
[CrossRef] [PubMed]

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fan, J.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

Fasching, G.

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Gensty, T.

Giovannini, M.

Giuliani, G.

Gmachl, C.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

Gokden, B.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Goyal, A.

Guo, D.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, Y. Kostov, and F.-S. Choa, “Quantum cascade laser based standoff photoacoustic chemical detection,” Opt. Express19(21), 20251–20257 (2011).
[CrossRef] [PubMed]

Haddadi, A.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Harder, C.

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

Heismann, F.

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

Hofstetter, D.

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Janssen, D.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

Kalchmair, S.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Katz, J.

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

Koch, T. L.

F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991).
[CrossRef]

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

Koren, U.

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

Kosina, H.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Kostov, Y.

Kremser, C.

Kröll, J.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Mann, C.

Margalit, S.

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

Martini, R.

R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005).
[CrossRef]

Menzel, S.

Nakajima, H.

H. Nakajima, “High-speed and high gain optical amplifying photodetection in a semiconductor laser amplifier,” Appl. Phys. Lett.54(11), 984–986 (1989).
[CrossRef]

Pflügl, C.

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

Reininger, P.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Sanchez, A.

Schrenk, W.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Schwarz, B.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Shacham, J.

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

Shih, M. H.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Shyu, D.

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Strasser, G.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Tamosiunas, V.

Tanbun-Ek, T.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Towner, F. J.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

Trivedi, S.

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

Tsang, W. T.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Turner, G.

Unterrainer, K.

von Staden, J.

Wang, C.

Wang, L.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Whittaker, E. A.

R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005).
[CrossRef]

Wisk, P.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

Worchesky, T.

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Yariv, A.

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

Zederbauer, T.

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Appl. Phys. B

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Appl. Phys. Lett.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett.95(22), 221104 (2009).
[CrossRef]

H. Nakajima, “High-speed and high gain optical amplifying photodetection in a semiconductor laser amplifier,” Appl. Phys. Lett.54(11), 984–986 (1989).
[CrossRef]

D. Hofstetter, M. Beck, and J. Faist, “Quantum-cascade-laser structures as photodetectors,” Appl. Phys. Lett.81(15), 2683–2685 (2002).
[CrossRef]

B. Schwarz, P. Reininger, H. Detz, T. Zederbauer, A. M. Andrews, S. Kalchmair, W. Schrenk, O. Baumgartner, H. Kosina, and G. Strasser, “A bi-functional quantum cascade device for same-frequency lasing and detection,” Appl. Phys. Lett.101(19), 191109 (2012).
[CrossRef]

Electron. Lett.

T. L. Koch, F. S. Choa, F. Heismann, and U. Koren, “Tunable multiple-quantum-well distributed-Bragg-reflector lasers as tunable narrowband receivers,” Electron. Lett.25(14), 890–892 (1989).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron.18(6), 976–983 (1982).
[CrossRef]

C. Harder, J. Katz, S. Margalit, J. Shacham, and A. Yariv, “Noise equivalent circuit of a semiconductor laser diode,” IEEE J. Quantum Electron.18(3), 333–337 (1982).
[CrossRef]

IEEE Photonics Technol. Lett.

M. H. Shih, L. Wang, F. S. Choa, T. Tanbun-Ek, P. Wisk, W. T. Tsang, and C. A. Burrus, “Integrated coherent transceivers for broadband access networks,” IEEE Photonics Technol. Lett.9(11), 1526–1528 (1997).
[CrossRef]

J. Electron. Mater.

L. Cheng, J. Fan, D. Janssen, D. Guo, X. Chen, F. J. Towner, and F.-S. Choa, “Analysis of InP regrowth on deep-etched mesas and structural characterization for buried-heterostructure quantum cascade lasers,” J. Electron. Mater.41(3), 506–513 (2012).
[CrossRef]

J. Lightwave Technol.

F. S. Choa and T. L. Koch, “Static and dynamical characteristics of narrow-band tunable resonant amplifiers as active filters and receivers,” J. Lightwave Technol.9(1), 73–83 (1991).
[CrossRef]

J. Opt. Fiber Commun. Rep.

R. Martini and E. A. Whittaker, “Quantum cascade laser-based free space optical communications,” J. Opt. Fiber Commun. Rep.2(4), 279–292 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

X. Chen, D. Shyu, F.-S. Choa, and S. Trivedi, “Quantum cascade laser as a mid-infrared photovoltaic and photoconductive detector,” Proc. SPIE8012, 80123N (2011).
[CrossRef]

X. Chen, L. Cheng, D. Guo, F.-S. Choa, and T. Worchesky, “Low threshold short cavity quantum cascade lasers,” Proc. SPIE7953, 79531Z (2011).
[CrossRef]

Rep. Prog. Phys.

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

Science

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The amplifier gain profile vs. the input signal frequency detuning from the amplifier central frequency under low input power (cavity-coupled power less than −45dBm). The biased current through the amplifier increases from 0.7Ith to 0.99Ith. (b) The optical gain profile vs. the frequency detuning under different cavity-coupled input power from −45dBm to −10dBm when the QCL amplifier is biased just below threshold (0.99Ith). The amplifier starts to saturate when the cavity-coupled input power is higher than ~−45dBm.

Fig. 2
Fig. 2

Experimental set-up for QCL as a resonant optical amplifier. Two QCL devices with dimension of 3mm long and 500μm wide were placed into LN2 dewars. After recording the QCL2 optical spectra under different bias current, the FTIR was then replaced by a MCT detector for optical power measurement.

Fig. 3
Fig. 3

(a) Measured FTIR spectra of QCL1 when it is pulsed at 10KHz and biased at ~8V, the main peak of its spectra is at 1289.1 cm−1; measured QCL2 electroluminescence when it is biased near 90% of its lasing threshold, and QCL2 lasing wavelength when it is biased around 200mA. (b) The truncated output spectra of QCL2 when its bias current increases from 160mA to 210mA. The main output wavelength shifted from 1287.6 cm−1 to 1276.2 cm−1 due to current induced thermal effect.

Fig. 4
Fig. 4

(a) The data extracted from the oscilloscope connecting to the QCL1 pulse generator, current probe and MCT detector. The blue trace is captured when QCL2 is at a bias below 125mA; the red trace is captured when QCL2 is biased near 150mA (near its Ith). Both traces are the voltage signal detected by the MCT detector. The detected optical signal is greatly increased in the latter case. (b) Blue line: measured receiving power from the RF spectrum analyzer as a function of receiver bias; Green line: QCL2 light-current relationship

Tables (1)

Tables Icon

Table 1 Parameters used in the QCL amplification calculation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G= | k | 2 [ 1 2 ( Γ v G g c ( N 0 N t +ΔN ) 1 τ p ) ] 2 + [ 1 2 αΓ v G g c ΔN+( ω Ω 0 ) ] 2
V=m V T ΔN N 0

Metrics