Abstract

We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30-40 nm), two SPP modes exist and that momentum of the spatially confined asymmetric field mode coincides with the dominant mode of the ITO waveguide. The results demonstrate that photoemission electron microscopy (PEEM) can be an important tool for the observation of photonic to SPP interactions in the study of integrated photonic circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012).
    [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  3. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
    [CrossRef]
  4. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
    [CrossRef] [PubMed]
  5. B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
    [CrossRef]
  6. C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012).
    [CrossRef]
  7. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
    [CrossRef] [PubMed]
  8. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
    [CrossRef]
  9. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  10. J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A362, 739–756 (2004).
  11. P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
    [CrossRef] [PubMed]
  12. M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).
  13. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
    [CrossRef] [PubMed]
  14. R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010).
    [CrossRef] [PubMed]
  15. L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013).
    [CrossRef]
  16. A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
    [CrossRef] [PubMed]
  17. J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
    [CrossRef]
  18. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012).
    [CrossRef] [PubMed]
  19. N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
    [CrossRef] [PubMed]
  20. D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
    [CrossRef]
  21. C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
    [CrossRef]
  22. R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
    [CrossRef]
  23. A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
    [CrossRef]
  24. R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
    [CrossRef]
  25. E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol.21(5), 1384–1393 (2003).
    [CrossRef]
  26. L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, and U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express19(13), 12014–12020 (2011).
    [CrossRef] [PubMed]
  27. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
    [CrossRef] [PubMed]
  28. R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
    [CrossRef]
  29. S. Kumar, Y.-W. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express20(22), 24614–24622 (2012).
    [CrossRef] [PubMed]
  30. B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
    [CrossRef] [PubMed]
  31. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express19(19), 18155–18163 (2011).
    [CrossRef] [PubMed]
  32. S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
    [CrossRef]
  33. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express16(14), 10455–10464 (2008).
    [CrossRef] [PubMed]
  34. A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
    [CrossRef] [PubMed]
  35. S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys.70(7), 3647–3654 (1991).
    [CrossRef]
  36. W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
    [CrossRef]
  37. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
    [CrossRef]
  38. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
    [CrossRef] [PubMed]
  39. L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986).
    [CrossRef]
  40. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
    [CrossRef] [PubMed]
  41. Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
    [CrossRef]
  42. R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
    [CrossRef] [PubMed]
  43. G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).
  44. M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
    [CrossRef]
  45. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  46. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
    [CrossRef]
  47. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
    [CrossRef] [PubMed]
  48. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
    [CrossRef] [PubMed]
  49. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).
  50. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  51. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
    [CrossRef]
  52. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011).
    [CrossRef]
  53. Sopra Group, N & K database. Bois Colombes, France.
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  55. W.-J. Lee, J.-E. Kim, H. Y. Park, and M.-H. Lee, “Silver superlens using antisymmetric surface plasmon modes,” Opt. Express18(6), 5459–5465 (2010).
    [CrossRef] [PubMed]
  56. R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
    [CrossRef]
  57. P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).
  58. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
    [CrossRef] [PubMed]

2013

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013).
[CrossRef]

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
[CrossRef]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

2012

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012).
[CrossRef] [PubMed]

S. Kumar, Y.-W. Lu, A. Huck, and U. L. Andersen, “Propagation of plasmons in designed single crystalline silver nanostructures,” Opt. Express20(22), 24614–24622 (2012).
[CrossRef] [PubMed]

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012).
[CrossRef]

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012).
[CrossRef] [PubMed]

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
[CrossRef]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

2011

A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

L. Stern, B. Desiatov, I. Goykhman, G. M. Lerman, and U. Levy, “Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe,” Opt. Express19(13), 12014–12020 (2011).
[CrossRef] [PubMed]

J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express19(19), 18155–18163 (2011).
[CrossRef] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).

2010

W.-J. Lee, J.-E. Kim, H. Y. Park, and M.-H. Lee, “Silver superlens using antisymmetric surface plasmon modes,” Opt. Express18(6), 5459–5465 (2010).
[CrossRef] [PubMed]

R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
[CrossRef]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010).
[CrossRef] [PubMed]

2009

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
[CrossRef]

2008

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express16(14), 10455–10464 (2008).
[CrossRef] [PubMed]

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

2007

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

2006

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
[CrossRef]

2004

J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A362, 739–756 (2004).

2003

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol.21(5), 1384–1393 (2003).
[CrossRef]

2001

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

2000

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

1997

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).

1991

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys.70(7), 3647–3654 (1991).
[CrossRef]

1990

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Abbas, A.

A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Adam, P.-M.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Aeschlimann, M.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

Albella, P.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Almaraz, L.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

Andersen, U. L.

Arbouet, A.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Aussenegg, F. R.

Awada, C.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Bachelot, R.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

Baudrion, A.-L.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Bauer, M.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012).
[CrossRef] [PubMed]

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

Bayer, D.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

Berini, P.

P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

Biagioni, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Bosman, M.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Bousseksou, A.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Brener, I.

C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012).
[CrossRef]

Brínek, L.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Brown, A.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Buckanie, N. M.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Capasso, F.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

Charra, F.

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013).
[CrossRef]

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Cheng, Q.

A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Chichkov, B. N.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cobley, C. M.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Coenen, T.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
[CrossRef] [PubMed]

Colombelli, R.

Costantini, D.

Culshaw, B.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

De Leon, I.

P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).

De Wilde, Y.

Desiatov, B.

Deslodge, D. M.

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

Ditlbacher, H.

Dixon, T.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

Dmitriev, A.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010).
[CrossRef] [PubMed]

Dornan, T.

R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
[CrossRef]

Douillard, L.

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013).
[CrossRef]

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

DuanMu, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Dub, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Dvorák, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Everitt, H. O.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Evlyukhin, A. B.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Fischer, A.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Fitzgerald, J.

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

Fitzgerald, J. P. S.

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
[CrossRef]

Fiutowski, J.

Flück, E.

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).

Gaier, O.

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

Galler, N.

Garcia-Cueto, B.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Geisler, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Gerber, G.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Girard, C.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

González, F.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Goykhman, I.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Griffith, O. H.

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

Grubisic, A.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Gu, N.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Guo, Z.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Halas, N. J.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Hammer, M.

Han, M.-Y.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Hart, T.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

Haupt, R.

L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986).
[CrossRef]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Heringdorf, F.-J.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

Hesselink, L.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

Hohenau, A.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express16(14), 10455–10464 (2008).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Homola, J.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
[CrossRef]

Huang, J.-S.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Huck, A.

Huo, Q.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012).
[CrossRef] [PubMed]

Jans, H.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012).
[CrossRef] [PubMed]

Jauernik, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Johnstone, W.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

Jones, T.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

Jun, C. Y.

C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012).
[CrossRef]

Jung, Y. S.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

Kalousek, R.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Kamp, M.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Kern, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

Kim, H. K.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

Kim, J.

Kim, J. T.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

Kim, J.-E.

Kim, S.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

Kim, T.-H.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Kirschbaum, P.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

Kjelstrup-Hansen, J.

Klick, A.

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Koller, D. M.

Konenkamp, R.

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
[CrossRef]

Könenkamp, R.

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
[CrossRef]

Korterik, J. P.

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Krenn, J. R.

Kubo, A.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

Kuipers, L.

Kumar, S.

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Lee, B.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

Lee, I.-M.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

Lee, M.-H.

Lee, W.-J.

Leißner, T.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012).
[CrossRef] [PubMed]

Leitner, A.

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express16(14), 10455–10464 (2008).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Lemke, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, and M. Bauer, “Mapping surface plasmon polariton propagation via counter-propagating light pulses,” Opt. Express20(12), 12877–12884 (2012).
[CrossRef] [PubMed]

Lerman, G. M.

Levy, U.

Linman, M. J.

A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Lipomi, D. J.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

Lu, Y.-W.

Ma, Y.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Marks, L. D.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Marty, R.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Melchior, P.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Merschdorf, M.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Mlayah, A.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Moreno, F.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Nadarajah, A.

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

Nesbitt, D. J.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Neuman, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Nijhuis, C.A.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Nordlander, P.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Oh, D.-H.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

Otter, A. M.

Park, H. Y.

Park, S.-Y.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

Perron, A.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Petek, H.

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

Pfeiffer, W.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Polman, A.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
[CrossRef] [PubMed]

Popescu, T.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Prangsma, J. C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Radke, J. W.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Reinhardt, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Rempfer, G. F.

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

Ringe, E.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).

Rubahn, H.-G.

Saliba, S.

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

Saliba, S. D.

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Šamoril, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Schneider, C.

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Seshadri, S. R.

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys.70(7), 3647–3654 (1991).
[CrossRef]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).

Shin, J.-S.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

Shin, S.-Y.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

Šikola, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Sindermann, S.

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

Skoczylas, W. P.

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

Slavík, R.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Stern, L.

Stewart, G.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

Tan, S.F.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Tetienne, J.-P.

Thon, A.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Vaisocherová, H.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
[CrossRef]

Van Duyne, R. P.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

van Hulst, N. F.

Varga, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
[CrossRef] [PubMed]

Videen, G.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Vogelgesang, R.

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010).
[CrossRef] [PubMed]

Voll, S.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Weeber, J.-C.

J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A362, 739–756 (2004).

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Wendler, L.

L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986).
[CrossRef]

Whitesides, G. M.

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

Wiemann, C.

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

Word, R. C.

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
[CrossRef]

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
[CrossRef]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

Wu, P. C.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Wu, X.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Wu, Y.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Xia, Y.

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

Xie, S.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Xu, L.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Yang, J.K.W.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yang, Y.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

Ye, E.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Yockell-Lelièvre, H.

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
[CrossRef]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
[CrossRef]

Zhang, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zhang, Y.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

ACS Nano

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6(2), 1742–1750 (2012).
[CrossRef] [PubMed]

Adv. Mater.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater.25(24), 3264–3294 (2013).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Adv. Optoelectron.

C. Y. Jun and I. Brener, “Optical manipulation with plasmonic beam shaping antenna structures,” Adv. Optoelectron.2012, 595646 (2012).
[CrossRef]

Analyst (Lond.)

R. Vogelgesang and A. Dmitriev, “Real-space imaging of nanoplasmonic resonances,” Analyst (Lond.)135(6), 1175–1181 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. C. Word, T. Dornan, and R. Könenkamp, “Photoemission from localized surface plasmons in fractal metal nanostructures,” Appl. Phys. Lett.96(25), 251110 (2010).
[CrossRef]

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Direct imaging of optical diffraction in photoemission electron microscopy,” Appl. Phys. Lett.103(2), 021118 (2013).
[CrossRef]

R. Könenkamp, R. C. Word, J. Fitzgerald, A. Nadarajah, and S. Saliba, “Controlled spatial switching and routing of surface plasmons in designed single-crystalline gold nanostructures,” Appl. Phys. Lett.101(14), 141114 (2012).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Photoemission from multiply excited surface plasmons in Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.71(5), 547–552 (2000).
[CrossRef]

Biosens. Bioelectron.

A. Abbas, M. J. Linman, and Q. Cheng, “New trends in instrumental design for surface plasmon resonance-based biosensors,” Biosens. Bioelectron.26(5), 1815–1824 (2011).
[CrossRef] [PubMed]

Chem. Soc. Rev.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev.41(7), 2849–2866 (2012).
[CrossRef] [PubMed]

Colloids Surf.

Z. Guo, Y. Zhang, Y. DuanMu, L. Xu, S. Xie, and N. Gu, “Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution,” Colloids Surf.278(1-3), 33–38 (2006).
[CrossRef]

J. Appl. Phys.

L. Wendler and R. Haupt, “Long‐range surface plasmon‐polaritons in asymmetric layer structures,” J. Appl. Phys.59(9), 3289 (1986).
[CrossRef]

S. R. Seshadri, “Attenuated total reflection method of excitation of the surface polariton in the Kretschmann configuration,” J. Appl. Phys.70(7), 3647–3654 (1991).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

L. Douillard and F. Charra, “Photoemission electron microscopy, a tool for plasmonics,” J. Electron Spectrosc. Relat. Phenom.189(Supplement), 24–29 (2013).
[CrossRef]

J. Lightwave Technol.

W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol.8(4), 538–544 (1990).
[CrossRef]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol.21(5), 1384–1393 (2003).
[CrossRef]

J. Mod. Opt.

B. Lee, I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, “Review on subwavelength confinement of light with plasmonics,” J. Mod. Opt.57(16), 1479–1497 (2010).
[CrossRef]

J. Nanomater.

D. Bayer, C. Wiemann, O. Gaier, M. Bauer, and M. Aeschlimann, “Time-resolved 2PPE and time-resolved PEEM as a probe of LSP’s in silver nanoparticles,” J. Nanomater.2008, 249514 (2008).
[CrossRef]

J. Phys. B

A. Kubo, Y. S. Jung, H. K. Kim, and H. Petek, “Femtosecond microscopy of localized and propagating surface plasmons in silver gratings,” J. Phys. B40(11), S259–S272 (2007).
[CrossRef]

J. Phys. Chem. C

C. Awada, T. Popescu, L. Douillard, F. Charra, A. Perron, H. Yockell-Lelièvre, A.-L. Baudrion, P.-M. Adam, and R. Bachelot, “Selective excitation of plasmon resonances of single Au triangles by polarization-dependent light excitation,” J. Phys. Chem. C116(27), 14591–14598 (2012).
[CrossRef]

J. Phys. D Appl. Phys.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys.45(11), 113001 (2012).
[CrossRef]

Meas. Sci. Technol.

R. Slavík, J. Homola, and H. Vaisocherová, “Advanced biosensing using simultaneous excitation of short and long range surface plasmons,” Meas. Sci. Technol.17(4), 932–938 (2006).
[CrossRef]

Microsc. Microanal.

G. F. Rempfer, D. M. Deslodge, W. P. Skoczylas, and O. H. Griffith, “Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat,” Microsc. Microanal.3, 14–27 (1997).

MRS Bull.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull.37(08), 768–779 (2012).
[CrossRef]

Nano Lett.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett.13(6), 2558–2563 (2013).
[CrossRef] [PubMed]

A. Grubisic, E. Ringe, C. M. Cobley, Y. Xia, L. D. Marks, R. P. Van Duyne, and D. J. Nesbitt, “Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: correlated spatial and laser polarization microscopy studies of individual Ag nanocubes,” Nano Lett.12(9), 4823–4829 (2012).
[CrossRef] [PubMed]

B. J. Wiley, D. J. Lipomi, J. Bao, F. Capasso, and G. M. Whitesides, “Fabrication of surface plasmon resonators by nanoskiving single-crystalline gold microplates,” Nano Lett.8(9), 3023–3028 (2008).
[CrossRef] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T.-H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett.11(9), 3531–3537 (2011).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

C. Lemke, C. Schneider, T. Leißner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett.13(3), 1053–1058 (2013).
[CrossRef] [PubMed]

Nat. Commun.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun.1(9), 150 (2010).
[CrossRef] [PubMed]

Nat. Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

P. Berini and I. De Leon, “surface plasmon–polariton amplifiers and lasers,” Nat. Photonics4, 382–387 (2011).

Opt. Commun.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun.282(23), 4513–4517 (2009).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun.220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express

Opt. Mater. Express

Philos. Trans. R. Soc. London, Ser. A

J. R. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A362, 739–756 (2004).

Phys. Rev. B

J. P. S. Fitzgerald, R. C. Word, S. D. Saliba, and R. Könenkamp, “Photonic near-field imaging in multiphoton photoemission electron microscopy,” Phys. Rev. B87(20), 205419 (2013).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B63(12), 125417 (2001).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. B Condens. Matter

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter33(8), 5186–5201 (1986).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B Condens. Matter44(11), 5855–5872 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109(12), 127701 (2012).
[CrossRef] [PubMed]

Quantum Electron.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” Quantum Electron.33, 2038–2059 (1997).

Sci. Rep.

M. Bosman, E. Ye, S.F. Tan, C.A. Nijhuis, J.K.W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, and M.-Y. Han, “Surface plasmon damping quantified with an electron nanoprobe,” Sci. Rep.3, 1312 (2012).

Ultramicroscopy

N. M. Buckanie, P. Kirschbaum, S. Sindermann, and F.-J. Heringdorf, “Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy,” Ultramicroscopy130, 49–53 (2013).
[CrossRef] [PubMed]

R. Könenkamp, R. C. Word, G. F. Rempfer, T. Dixon, L. Almaraz, and T. Jones, “5.4 nm spatial resolution in biological photoemission electron microscopy,” Ultramicroscopy110(7), 899–902 (2010).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Sopra Group, N & K database. Bois Colombes, France.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

In the experiment an ultrafast laser beam is coupled into an indium tin oxide (ITO) waveguide via diffraction at a slit. The guided photonic wave travels underneath a gold platelet where it is channeled into a surface plasmon polariton (SPP). The progress of the photonic mode and SPP is observed as interference-based modulation to the photoemission yield. Polarization direction (TE or TM) of the incident electric field E indicated.

Fig. 2
Fig. 2

Time-averaged Poynting vector <Sx> of the asymmetric field (ab) and symmetric field (sb) SPP modes of a 3-layer slab model comprised of ITO, a 40-nm thick gold platelet, and vacuum. Scale normalized such that each SPP wave carries 1 watt per meter along the y-axis, with the x-axis being the propagation direction.

Fig. 3
Fig. 3

SEM of the substrate and specimen. (a) edge of ITO/glass substrate viewed at 70° from surface normal. (b) gold platelet and two gold quantum dots on ITO substrate near the FIB-milled groove viewed at 55° from the surface normal.

Fig. 4
Fig. 4

False-color PEEM micrographs of a gold platelet on an ITO thin film waveguide. Color scales indicate relative PE yield. (a) Identification key for objects seen in the images. Direction of guided light, which enters via the groove indicated. (b) 1-photon PEEM for reference. (c) 2-photon PEEM with excitation light TM-polarized. Light guided by the film appears as interference fringes. Photoelectron emission from the gold flake is enhanced by SPPs produced by energy transfer from the waveguide. (d) 2-photon PEEM with the excitation light TE-polarized. Since the guided TE-polarized light cannot generate SPPs, photoelectron emission from the platelet is low. The gold quantum dots are bright due to localized SPP enhancement.

Fig. 5
Fig. 5

Comparison of photoemission yields along recorded along lines across the ITO waveguide alone (dashed) and across the ITO waveguide and gold platelet (solid) as indicated in (a). (b) When the laser has TM polarization the platelet exhibits strong PE. Beyond the platelet PE yield is low. (c) When the laser has TE polarization PE yield from the platelet is very low. Beyond the platelet the yield is similar to the basic ITO waveguide. A pixel represents 20 × 20 nm2.

Fig. 6
Fig. 6

Optical model for interference between a surface wave and incident laser. (a) the first laser wavefront generates a surface wave at point O. A second wavefront overtakes the surface wave at point Q leading to interference in the photoemission yield. (b) ray-model of a waveguide and of the generation of a SPP in a manner similar to the Kretschmann prism method. The guided TM wave generates a SPP on gold when the waveguide effective index is approximately equal to the SPP propagation constant relative to light, i.e. neff ~Re[β]/k0.

Fig. 7
Fig. 7

FFT periodograms of ITO waveguide yield profiles taken along dashed lines indicated in Fig. 5(a) for x>0. The two peaks correspond to the m = 0 and m = 1 waveguide modes. The profiles were processed with the Welch window function.

Fig. 8
Fig. 8

Vacuum/ITO/glass slab waveguide solutions. (a) Geometrical method of solution of Eqs. (6) and (7) for modes of an ITO film of thickness 275 nm. LHS in dashed lines and RHS in solid lines. (b) Effective indices of TM waveguide modes as a function ITO thickness. The film used in the study indicated by the vertical bar. The upper limit for SPPs [from Fig. 10(b)] suggests that the TM0 mode of the present ITO waveguide is not available for plasmonic coupling.

Fig. 9
Fig. 9

Graphical method of solution of Eq. (10) for the SPP supermodes of a three-layer slab model of vacuum/gold/ITO. In complex space we plot the propagation constants β that independently satisfy the real and imaginary parts of Eq. (10), which are shown as solid and dashed lines, respectively. Complete solutions exist where real and imaginary lines intersect. There are generally two solutions for each gold thickness d, which correspond to the sb and ab modes. Solutions for five gold film thicknesses shown: (1) 25 nm, (2) 30 nm, (3) 35 nm, (4), 40 nm, and (5) 45 nm.

Fig. 10
Fig. 10

SPP supermodes for gold thickness d calculated from the three-layer slab model of vacuum/gold/ITO at λ0 = 410 nm. (a) propagation distance of the SPP supermodes. (b) effective index of the symmetric sb and asymmetric ab modes plotted with the TM photonic modes of the ITO waveguide. The vertical bar indicates the estimated thickness range of the gold platelet. The waveguide TM1 mode coincides with the ab mode at d ~40 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Y( r )= 0 t 0 | E 0 ( r,t )+ E r ( r,t ) | 2n dt.
E 0 ( r,t )= E 0 exp[ i( k 0 rsinθcosϕωt ) ]; E r ( r,t )= E r exp[ r/2L ]exp[ i( k r rωt+ζ ) ],
D = λ 0 c / v sin θ cos ϕ .
k 0 n 2 d cos φ m m π = tan 1 [ n 2 n 2 2 sin 2 φ m n 1 2 n 1 2 cos φ m ] + tan 1 [ n 2 n 2 2 sin 2 φ m n 3 2 n 3 2 cos φ m ]
k 0 n 2 d cos φ m m π = tan 1 [ sin 2 φ m ( n 1 / n 2 ) 2 cos φ m ] + tan 1 [ sin 2 φ m ( n 3 / n 2 ) 2 cos φ m ] .
β= k 0 ϵ 1 ϵ 2 ϵ 1 + ϵ 2 .
k SPP =Re[β]; L SPP = ( 2Im[β] ) 1 .
exp ( 2 α 2 d ) + ( ϵ 1 α 2 + ϵ 2 α 1 ) ( ϵ 2 α 3 + ϵ 3 α 2 ) ( ϵ 1 α 2 ϵ 2 α 1 ) ( ϵ 2 α 3 ϵ 3 α 2 ) = 0 ,
α s = β 2 ϵ s k 0 2 .

Metrics