Abstract

We present a novel technique for fabricating photonic crystal fiber (PCF) that employs a slurry casting method to produce a silica PCF preform. By combining this approach with an OH reduction process, a low-loss PCF (1.1 dB/km at 1.55 μm and 3.1 dB/km at 1.38 μm) was successfully fabricated. Furthermore, by employing air-hole pressure control in the drawing process, a minimum loss of 0.86 dB/km was obtained. This method provides highly flexible air-hole structures and a low fabrication cost.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).
  2. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. Y. D. Hazan, J. B. MacChesney, T. E. Stockert, D. J. Trevor, and R. S. Windeler, “Sol-gel method of making an optical fiber with multiple apertures,” US Patent 6467312 B1 (2000).
  4. R. T. Bise and D. J. Trever, “Sol-gel derived microstructured fiber: fabrication and characterization,” OFC2005OWL6 (2005).
  5. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Opt. Express11(20), 2641–2645 (2003).
    [PubMed]
  6. J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
    [CrossRef]
  7. K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” ECOC2007PD2.1 (2007).
  8. A. Giraud, F. Sandoz, and J. Pelkonen, “Innovation in preform fabrication technologies,” Opto- Electronics and Communications Conference (OECC 2009), Hong Kong, ThM1.
    [CrossRef]
  9. T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” CLEO2012 CTh3G.1 (2012).
    [CrossRef]
  10. F. Ishii, S. Yoshizawa, T. Yajima, and H. Araki, “Connector component for optical fiber, manufacturing method thereof and optical member,” US patent 0194819A1 (2011).
  11. P. C. Schultz, “Optical Absorption of the Transition Elements in Vitreous Silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
    [CrossRef]
  12. B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
    [CrossRef]
  13. K. Kurokawa, K. Tajima, and K. Nakajima, “10-GHz 0.5-ps pulse generation in 1000-nm band in PCF for high-speed optical communication,” J. Lightwave Technol.25(1), 75–78 (2007).
    [CrossRef]

2007 (1)

2003 (2)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Opt. Express11(20), 2641–2645 (2003).
[PubMed]

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

2002 (1)

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

1996 (1)

1974 (1)

P. C. Schultz, “Optical Absorption of the Transition Elements in Vitreous Silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

Atkin, D. M.

Birks, T. A.

Bise, R. T.

R. T. Bise and D. J. Trever, “Sol-gel derived microstructured fiber: fabrication and characterization,” OFC2005OWL6 (2005).

Buckley, E.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

Canning, J.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

Frampton, K.

Hewak, D. W.

Jeppesen, P.

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

Kiang, K. M.

Knight, J. C.

Kurokawa, K.

Lyttikainen, K.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

Monro, T. M.

Moore, R.

Nakajima, K.

Nielsen, M. D.

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

Peucheret, C.

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

Richardson, D. J.

Russell, P. S.

Rutt, H. N.

Ryan, T.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

Schultz, P. C.

P. C. Schultz, “Optical Absorption of the Transition Elements in Vitreous Silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

Tajima, K.

Trever, D. J.

R. T. Bise and D. J. Trever, “Sol-gel derived microstructured fiber: fabrication and characterization,” OFC2005OWL6 (2005).

Tucknott, J.

Zsigri, B.

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

Electron. Lett. (1)

B. Zsigri, C. Peucheret, M. D. Nielsen, and P. Jeppesen, “Transmission over 5.6 km large effective area and low loss (1.7 dB/km) photonic crystal fiber,” Electron. Lett.39(10), 796–798 (2003).
[CrossRef]

J. Am. Ceram. Soc. (1)

P. C. Schultz, “Optical Absorption of the Transition Elements in Vitreous Silica,” J. Am. Ceram. Soc.57(7), 309–313 (1974).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Opt. Commun.205(1–3), 95–99 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (7)

Y. D. Hazan, J. B. MacChesney, T. E. Stockert, D. J. Trevor, and R. S. Windeler, “Sol-gel method of making an optical fiber with multiple apertures,” US Patent 6467312 B1 (2000).

R. T. Bise and D. J. Trever, “Sol-gel derived microstructured fiber: fabrication and characterization,” OFC2005OWL6 (2005).

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).

K. Tajima, “Low loss PCF by reduction of hole surface imperfection,” ECOC2007PD2.1 (2007).

A. Giraud, F. Sandoz, and J. Pelkonen, “Innovation in preform fabrication technologies,” Opto- Electronics and Communications Conference (OECC 2009), Hong Kong, ThM1.
[CrossRef]

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” CLEO2012 CTh3G.1 (2012).
[CrossRef]

F. Ishii, S. Yoshizawa, T. Yajima, and H. Araki, “Connector component for optical fiber, manufacturing method thereof and optical member,” US patent 0194819A1 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

PCF fabrication process using a slurry casting method.

Fig. 2
Fig. 2

Photographs of PCF preform fabricated by the slurry casting method after drying. (a) external view and (b) cross section .

Fig. 3
Fig. 3

Photographs of PCF preform fabricated by the slurry casting method after sintering. (a) external view and (b) cross section.

Fig. 4
Fig. 4

PCF drawing method. (a) closed air-hole drawing system and (b) pressure controlled drawing system

Fig. 5
Fig. 5

SEM photograph of PCF fabricated by the slurry casting method.

Fig. 6
Fig. 6

Transmission loss of PCF fabricated by the slurry casting method without an OH reduction process (a) and its λ−4 plot (b). Fiber length is 135 m.

Fig. 7
Fig. 7

Transmission loss of PCF fabricated by a closed air-hole drawing system with an OH reduction process (a) and its λ−4 plot (b). Fiber length is 670 m.

Fig. 8
Fig. 8

Transmission loss of PCF fabricated with a pressure controlled drawing system with an OH reduction process (a) and its λ−4 plot (b). Fiber length is 1.3 km.

Fig. 9
Fig. 9

OTDR waveform of PCF fabricated with a pressure controlled drawing system. Fiber length is 1.3 km.

Tables (1)

Tables Icon

Table 1 Comparison of transmission losses of PCFs with similar structures fabricated by different methods.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = A / λ 4 + B + α O H + α I R

Metrics