Abstract

We propose and demonstrate a multiplexing method for ultrasonic sensors based on fiber Bragg gratings (FBGs) that are included inside the laser cavity of a fiber-ring laser. The multiplexing is achieved using add-drop filters to route the light signals, according to their wavelengths, into different optical paths, each of which contains a separate span of erbium-doped fiber (EDF) as the gain medium. Because a specific span of EDF only addresses a single wavelength channel, mode completion is avoided and the FBG ultrasonic sensors can be simultaneously demodulated. The proposed method is experimentally demonstrated using a two-channel system with two sensing FBGs in a single span of fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
    [CrossRef]
  2. Y. Qiao, Y. Zhou, and S. Krishnaswamy, “Adaptive demodulation of dynamic signals from fiber Bragg gratings using two-wave mixing technology,” Appl. Opt.45(21), 5132–5142 (2006).
    [CrossRef] [PubMed]
  3. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
    [CrossRef] [PubMed]
  4. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
    [CrossRef] [PubMed]
  5. P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
    [CrossRef]
  6. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express20(27), 28353–28362 (2012).
    [CrossRef] [PubMed]
  7. T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
    [CrossRef]
  8. M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express21(24), 29269–29276 (2013).
  9. M. A. Mirza and G. Stewart, “Multiwavelength operation of erbium-doped fiber lasers by periodic filtering and phase modulation,” J. Lightwave Technol.27(8), 1034–1044 (2009).
    [CrossRef]
  10. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” Ieee Photonic. Technol. Lett.8(11), 1459–1461 (1996).
    [CrossRef]
  11. J. J. Tian, Y. Yao, Y. X. Sun, X. L. Yu, and D. Y. Chen, “Multiwavelength Erbium-doped fiber laser employing nonlinear polarization rotation in a symmetric nonlinear optical loop mirror,” Opt. Express17(17), 15160–15166 (2009).
    [CrossRef] [PubMed]
  12. M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
    [CrossRef]
  13. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  14. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
    [CrossRef]
  15. J. L. Rose, Ultrasonic waves in solid media (Cambridge University Press, 1999).

2013

2012

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express20(27), 28353–28362 (2012).
[CrossRef] [PubMed]

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

2011

2009

2008

2006

2003

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

2001

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1996

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” Ieee Photonic. Technol. Lett.8(11), 1459–1461 (1996).
[CrossRef]

Cai, Z. P.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Chen, D. Y.

Cranch, G. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Cui, H. L.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

Fu, H. Y.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Galzerano, G.

Gatti, D.

Han, M.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express21(24), 29269–29276 (2013).

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

Hu, L. L.

Janner, D.

Kirkendall, C. K.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Krishnaswamy, S.

Laporta, P.

Liu, T. Q.

M. Han, T. Q. Liu, L. L. Hu, and Q. Zhang, “Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection,” Opt. Express21(24), 29269–29276 (2013).

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

Longhi, S.

Luo, Z. Q.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Mirza, M. A.

Ntziachristos, V.

Okabe, Y.

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” Ieee Photonic. Technol. Lett.8(11), 1459–1461 (1996).
[CrossRef]

Perez, I. M.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Qiao, Y.

Razansky, D.

Rosenthal, A.

Stewart, G.

Sun, Y. X.

Tian, J. J.

Udd, E.

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Wang, J. Z.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Wu, Q.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” Ieee Photonic. Technol. Lett.8(11), 1459–1461 (1996).
[CrossRef]

Xu, H. Y.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Yao, Y.

Ye, C. C.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Yu, X. L.

Zhang, C.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Zhang, Q.

Zhou, M.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Zhou, Y.

Appl. Opt.

IEEE J. Quantum Electron.

G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron.39(12), 1579–1586 (2003).
[CrossRef]

Ieee Photonic. Technol. Lett.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” Ieee Photonic. Technol. Lett.8(11), 1459–1461 (1996).
[CrossRef]

IEEE Sens. J.

T. Q. Liu and M. Han, “Analysis of π-phase-shifted fiber Bragg gratings for ultrasonic detection,” IEEE Sens. J.12(7), 2368–2373 (2012).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

M. Zhou, Z. Q. Luo, J. Z. Wang, C. C. Ye, H. Y. Fu, C. Zhang, Z. P. Cai, and H. Y. Xu, “Graphene-assisted all-fiber multiwavelength erbium-doped fiber laser functionalized with evanescent field interaction,” Laser Phys.22(5), 991–995 (2012).
[CrossRef]

Opt. Eng.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg grating ultrasonic sensor,” Opt. Eng.42(4), 956–963 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

I. M. Perez, H. L. Cui, and E. Udd, “Acoustic emission detection using fiber Bragg gratings,” Proc. SPIE4328, 209–215 (2001).
[CrossRef]

Other

J. L. Rose, Ultrasonic waves in solid media (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) the proposed multiplexed FRL ultrasonic sensor system, (b) the optical pathways of light in the demodulation box, and (c) the reflection spectrum of the sensing FBGs and the transmission spectrum of the TOBPFs. Circ.: circulator

Fig. 2
Fig. 2

(a) Schematic of the experimental setup; (b) measured transmission spectrum of one of the two TOBPF; and (c) measured reflection spectrum of the two cascaded sensing FBGs.

Fig. 3
Fig. 3

Optical spectra measured by the OSA at the output from (a) the 99/1 fiber coupler; (b) the 67/33 fiber coupler in Channel 1; and (c) the 67/33 fiber coupler in Channel 2.

Fig. 4
Fig. 4

Experimental results. (a) and (c): Responses of PZT and FRL sensors to continuous ultrasonic waves; (b) and (d): electrical spectra measured by the SA; (c) and (f): responses of PZT and FRL sensors to ultrasonic pulses. (a)-(c) are results for Channel 1 and (d)-(f) are for Channel 2. The FRL sensor response shown in (f) is an 8-time average measurement result.

Metrics