Abstract

Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
    [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
    [CrossRef] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
    [CrossRef] [PubMed]
  4. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
    [CrossRef] [PubMed]
  5. T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
    [CrossRef]
  6. G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
    [CrossRef]
  7. R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
    [CrossRef]
  8. P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
    [CrossRef] [PubMed]
  9. P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996).
    [CrossRef] [PubMed]
  10. S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011).
    [CrossRef] [PubMed]
  11. J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
    [CrossRef]
  12. R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
    [CrossRef] [PubMed]
  13. C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
    [CrossRef]
  14. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
    [CrossRef]
  15. A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
    [CrossRef] [PubMed]
  16. I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
    [CrossRef]
  17. M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
    [CrossRef]
  18. S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
    [CrossRef]
  19. S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
    [CrossRef] [PubMed]
  20. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
    [CrossRef] [PubMed]
  21. E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express14, 13089–13094 (2006).
    [CrossRef] [PubMed]
  22. V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
    [CrossRef] [PubMed]
  23. M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
    [CrossRef]
  24. N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
    [CrossRef] [PubMed]
  25. M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011).
    [CrossRef]
  26. Y. Kang, K. Cho, J. Noh, D. L. P. Vitullo, C. Leary, and M. G. Raymer, “Remote preparation of complex spatial states of single photons and verification by two-photon coincidence experiment,” Opt. Express18, 1217–1233 (2010).
    [CrossRef] [PubMed]
  27. A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
    [CrossRef]
  28. F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
    [CrossRef]
  29. F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
    [CrossRef]
  30. S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012).
    [CrossRef]
  31. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
    [CrossRef] [PubMed]
  32. P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994).
    [CrossRef] [PubMed]
  33. E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
    [CrossRef]
  34. D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
    [CrossRef]
  35. C. H. Sequin, “Blooming suppression in charge coupled area imaging devices,” Bell Syst. Tech. J.51, 1923 (1972).
    [CrossRef]

2013 (4)

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

2012 (5)

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
[CrossRef]

S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012).
[CrossRef]

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
[CrossRef] [PubMed]

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

2011 (4)

S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011).
[CrossRef] [PubMed]

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011).
[CrossRef]

2010 (3)

Y. Kang, K. Cho, J. Noh, D. L. P. Vitullo, C. Leary, and M. G. Raymer, “Remote preparation of complex spatial states of single photons and verification by two-photon coincidence experiment,” Opt. Express18, 1217–1233 (2010).
[CrossRef] [PubMed]

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

2009 (1)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

2008 (1)

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

2006 (1)

2005 (3)

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

2004 (4)

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

2003 (1)

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

2001 (1)

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
[CrossRef]

1998 (1)

C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
[CrossRef]

1996 (1)

P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996).
[CrossRef] [PubMed]

1995 (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

1994 (2)

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994).
[CrossRef] [PubMed]

1972 (1)

C. H. Sequin, “Blooming suppression in charge coupled area imaging devices,” Bell Syst. Tech. J.51, 1923 (1972).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

Allevi, A.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Aspden, R. S.

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Barbosa, G. A.

P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996).
[CrossRef] [PubMed]

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994).
[CrossRef] [PubMed]

Barnett, S. M.

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express14, 13089–13094 (2006).
[CrossRef] [PubMed]

Barreiro, J. T.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

Berchera, I. R.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

Blanchet, J.-L.

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

Bondani, M.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Boyd, R. W.

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Branczyk, A. M.

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

Brida, G.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

Brougham, T.

F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
[CrossRef]

Buller, G. S.

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

Chekhova, M.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Chekhova, M. V.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
[CrossRef]

Cho, K.

Courtial, J.

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
[CrossRef]

de Almeida, J. O.

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

de Oliveira, A. N.

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

Devaux, F.

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

Eberly, J. H.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Edgar, M. P.

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

Eliel, E. R.

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
[CrossRef] [PubMed]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

Fickler, R.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

Fornaro, G. A.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

Franke-Arnold, S.

Furfaro, L.

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Genovese, M.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

Goggin, M. E.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

Goode, D. P.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Helwig, W.

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

Hor-Meyll, M.

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

Huber, M.

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

Iskhakov, T.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Izdebski, F.

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

Kalashnikov, D. A.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Kang, Y.

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Krenn, M.

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

Kwiat, P. G.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

Lantz, E.

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

Lapkiewicz, R.

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

Law, C. K.

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Leary, C.

Lima, G.

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

Löffler, W.

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
[CrossRef] [PubMed]

Lopaeva, E. D.

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Machado da Silva, J. C.

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

Miatto, F. M.

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
[CrossRef]

Monken, C. H.

S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011).
[CrossRef] [PubMed]

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
[CrossRef]

P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994).
[CrossRef] [PubMed]

Nasr, M. B.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Neves, L.

M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011).
[CrossRef]

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

Nguyen, N.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Noh, J.

Padgett, M. J.

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

E. Yao, S. Franke-Arnold, J. Courtial, M. J. Padgett, and S. M. Barnett, “Observation of quantum entanglement using spatial light modulators,” Opt. Express14, 13089–13094 (2006).
[CrossRef] [PubMed]

Padua, S.

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

Pádua, S.

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
[CrossRef]

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

Peters, N. A.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

Pimentel, A. H.

S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012).
[CrossRef]

Pires, H. D. L.

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Plick, W.

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

Ralph, T. C.

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

Ramelow, S.

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

Raymer, M. G.

Reinhard, B. M.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Ribeiro, P. H. S.

P. H. S. Ribeiro, C. H. Monken, and G. A. Barbosa, “Measurement of coherence area in parametric downconversion luminescence,” Appl. Opt.33, 352–355 (1994).
[CrossRef] [PubMed]

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

Rong, G.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Sala, V. G.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Salakhutdinov, V. D.

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
[CrossRef] [PubMed]

Saleh, B. E. A.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

Santos, I. F.

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

Sequin, C. H.

C. H. Sequin, “Blooming suppression in charge coupled area imaging devices,” Bell Syst. Tech. J.51, 1923 (1972).
[CrossRef]

Sergienko, A. V.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
[CrossRef]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Silberhorn, C.

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

Solís-Prosser, M. A.

M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011).
[CrossRef]

Souto Ribeiro, P. H.

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011).
[CrossRef] [PubMed]

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
[CrossRef]

P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996).
[CrossRef] [PubMed]

Stone, P. R.

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Takeuchi, M.

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

Tasca, D. S.

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

Teich, M. C.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

van Exter, M. P.

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

Vitullo, D. L. P.

Walborn, S. P.

S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012).
[CrossRef]

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

S. P. Walborn, P. H. Souto Ribeiro, and C. H. Monken, “Interference effects induced by non-local spatial filtering,” Opt. Express19, 17308–17317 (2011).
[CrossRef] [PubMed]

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

Wei, T.-C.

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

Yang, L.

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Yao, A. M.

F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
[CrossRef]

Yao, E.

Zeilinger, A.

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

C. H. Sequin, “Blooming suppression in charge coupled area imaging devices,” Bell Syst. Tech. J.51, 1923 (1972).
[CrossRef]

Eur. Phys. J. D (2)

F. M. Miatto, H. D. L. Pires, S. M. Barnett, and M. P. van Exter, “Spatial Schmidt modes generated in parametric down-conversion,” Eur. Phys. J. D66, 263 (2012).
[CrossRef]

F. M. Miatto, T. Brougham, and A. M. Yao, “Cartesian and polar Schmidt bases for down-converted photons: How high dimensional entanglement protects the shared information from non-ideal measurements,” Eur. Phys. J. D66, 183 (2012).
[CrossRef]

Eur. Phys. J. Special Topics (1)

T. Iskhakov, A. Allevi, D. A. Kalashnikov, V. G. Sala, M. Takeuchi, M. Bondani, and M. Chekhova, “Intensity correlations of thermal light,” Eur. Phys. J. Special Topics199, 127–138 (2011).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. P. Walborn and A. H. Pimentel, “Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion,” J. Phys. B: At. Mol. Opt. Phys.45, 165502 (2012).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

E. Lantz, J.-L. Blanchet, L. Furfaro, and F. Devaux, “Multi-imaging and Bayesian estimation for photon counting with EMCCDs,” Mon. Not. R. Astron. Soc.386, 2262–2270 (2008).
[CrossRef]

New J. Phys. (2)

A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010).
[CrossRef]

R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, “EPR-based ghost imaging using a single-photon-sensitive camera,” New J. Phys.15, 073032 (2013).
[CrossRef]

Opt. Commun. (1)

M. B. Nasr, D. P. Goode, N. Nguyen, G. Rong, L. Yang, B. M. Reinhard, B. E. A. Saleh, and M. C. Teich, “Quantum optical coherence tomography of a biological sample,” Opt. Commun.282, 1154–1159 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rep. (1)

S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Phys. Rev. A (10)

J. O. de Almeida, S. P. Walborn, P. H. Souto Ribeiro, and M. Hor-Meyll, “Fourth-order coherence induced by spatial mode parity selection,” Phys. Rev. A86, 033839 (2012).
[CrossRef]

C. H. Monken, P. H. Souto Ribeiro, and S. Pádua, “Transfer of angular spectrum and image formation in spontaneous parametric down-conversion,” Phys. Rev. A57, 3123–3126 (1998).
[CrossRef]

P. H. S. Ribeiro, S. Pádua, J. C. Machado da Silva, and G. A. Barbosa, “Controlling the degree of visibility of Young’s fringes with photon coincidence measurements,” Phys. Rev. A49, 4176–4179 (1994).
[CrossRef] [PubMed]

P. H. Souto Ribeiro and G. A. Barbosa, “Direct and ghost interference in double-slit experiments with coincidence measurements,” Phys. Rev. A54, 3489–3492 (1996).
[CrossRef] [PubMed]

G. Brida, M. V. Chekhova, G. A. Fornaro, M. Genovese, E. D. Lopaeva, and I. R. Berchera, “Systematic analysis of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light,” Phys. Rev. A83, 063807 (2011).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S. Ramelow, and A. Zeilinger, “Entangled singularity patterns of photons in Ince-Gauss modes,” Phys. Rev. A87, 012326 (2013).
[CrossRef]

I. F. Santos, L. Neves, G. Lima, C. H. Monken, and S. Pádua, “Generation and detection of magnified images via illumination by entangled photon pairs,” Phys. Rev. A72, 033802 (2005).
[CrossRef]

M. A. Solís-Prosser and L. Neves, “Remote state preparation of spatial qubits,” Phys. Rev. A84, 012330 (2011).
[CrossRef]

D. S. Tasca, M. P. Edgar, F. Izdebski, G. S. Buller, and M. J. Padgett, “Optimizing the use of detector arrays for measuring intensity correlations of photon pairs,” Phys. Rev. A88, 013816 (2013).
[CrossRef]

Phys. Rev. Lett. (10)

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett.92, 210403 (2004).
[CrossRef] [PubMed]

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat, “Remote state preparation: Arbitrary remote control of photon polarization,” Phys. Rev. Lett.94, 150502 (2005).
[CrossRef] [PubMed]

V. D. Salakhutdinov, E. R. Eliel, and W. Löffler, “Full-field quantum correlations of spatially entangled photons,” Phys. Rev. Lett.108, 173604 (2012).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
[CrossRef] [PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett.87, 013602 (2001).
[CrossRef]

A. F. Abouraddy, P. R. Stone, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon imaging of a pure phase object,” Phys. Rev. Lett.93, 213903 (2004).
[CrossRef] [PubMed]

S. P. Walborn, A. N. de Oliveira, S. Padua, and C. H. Monken, “Multimode Hong-Ou-Mandel interference,” Phys. Rev. Lett.90, 143601 (2003).
[CrossRef] [PubMed]

C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett.92, 127903 (2004).
[CrossRef] [PubMed]

Sci. Rep. (1)

R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and A. Zeilinger, “Real-time imaging of quantum entanglement,” Sci. Rep.3, 1914 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. A type-I phase matched SPDC source emits frequency degenerate down-converted photons in a collinear configuration. The generated photon pairs are probabilistically split at the beam splitter (BS) and propagate through the object and camera arms. The detections of the photons in the object arm are used as a trigger for the acquisitions of the ICCD. Ghost images or diffraction patterns of the object encoded on the spatial light modulator (SLM) are obtained on the ICCD.

Fig. 2
Fig. 2

(a) Near-field and (b) far-field patterns of the down-converted light as seen on the ICCD camera. The insets show a cross-section of the beam. These images are the result of summing 10 acquisitions of 1s each with the intensifier fired continuously.

Fig. 3
Fig. 3

Triggered images obtained on the ICCD for single-mode, Figs. 3(a) and 3(b), or multi-mode, Figs. 3(c) and 3(d), detection of the trigger photons. The images in Figs. 3(a) and 3(c) where taken with the ICCD in the image plane and the images in Figs. 3(b) and 3(d) with the ICCD in the far-field of the SPDC source. The colormap scale represents the number of photo-detection events in each pixel. Note that the colormap of Fig. 3(b) was adjusted to allow the visualization of the low-intensity features of the diffraction pattern.

Fig. 4
Fig. 4

Summed horizontal cross-sections of the images shown in Fig. 3. The cross-sections were summed over the central 20 rows for the images in image plane and 120 rows for the images in the far-field. The insets show the part of the images used.

Fig. 5
Fig. 5

Close-up showing the central part of the images displayed in Fig. 3. The area of the CCD chip displayed in these images is (2.6 × 2.6)mm2. The written number of photons in each of these images was calculated based on the number of photo-detection islands, as explained in section 4.1. Note that the numbers provided for the images with the multi-mode fibre, Figs. 5(c) and 5(d), are an under-estimation of the number of detected photons (see section 4.1).

Fig. 6
Fig. 6

Example of typical images obtained after digitization of the pixel outputs. The insets show an enlargement of 50 × 50 pixels of the central part of the images. Photo-detection islands comprising a few adjacent pixels are visible in the images taken with the single mode fibre, Figs. 6(a) and 6(b). Due to the higher mean number of photons, connected photo-detection islands can be seen in the images taken with the multi-mode fibre, Figs. 6(c) and 6(d).

Tables (1)

Tables Icon

Table 1 Table with the relevant values for the calculation of the heralding efficiencies of our multi-pixel triggered detection system. e: average number of events per image; n: predicted number of noise events per image; ST : trigger rate (in units of s−1); SBG: background count rate (in units of s−1); ηH: heralding efficiency as defined in Eq. (15). The acquisition time of each image is τ = 2s, and the average number of detected events per image e is calculated based on the total number of acquired images, 1800.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

| Ψ = d ρ s d ρ i Ψ ( ρ s , ρ i ) | ρ s | ρ i ,
Ψ ( ρ s , ρ i ) = 𝒲 ( ρ s + ρ i ) Γ ( ρ s ρ i ) ,
Ψ ( ρ 1 , ρ 2 ) = i 2 [ Ψ ( ρ 1 M , ρ 2 M ) + Ψ ( ρ 2 M , ρ 1 M ) ] ,
Π ^ S M = | ϕ m n ϕ m n | ,
| ϕ m n = d ρ 1 A ( ρ 1 ) ψ m n ( ρ 1 ) | ρ 1 .
| χ m n 2 ϕ m n | Ψ 1 = d ρ 2 χ m n ( ρ 2 ) | ρ 2 ,
χ m n ( ρ 2 ) = d ρ 1 A ( ρ 1 ) ψ m n * ( ρ 1 ) Ψ ( ρ 1 , ρ 2 ) .
| χ G 2 d ρ 2 A ( ρ 2 ) ψ G * ( ρ 2 ) | ρ 2 .
Π ^ M M = m , n Π ^ S M = m , n | ϕ m n ϕ m n | = d ρ 1 A 2 ( ρ 1 ) | ρ 1 ρ 1 | ,
ς ^ 2 Tr 1 ( Π ^ M M | Ψ Ψ | ) = m , n | χ m n χ m n | = d ρ 2 d ρ 2 [ d ρ 1 A 2 ( ρ 1 ) Ψ ( ρ 1 , ρ 2 ) Ψ * ( ρ 1 , ρ 2 ) ] | ρ 2 ρ 2 | ,
𝒫 S M , I P ( ρ 2 ) | ρ 2 | χ G 2 | 2 = A 2 ( ρ 2 ) | ψ G ( ρ 2 ) | 2 ,
𝒫 S M , F F ( ρ 2 ) | k ρ 2 / f e | χ G 2 | 2 = | d ξ A ˜ ( ξ ) ψ ˜ G ( k f e ρ 2 ξ ) | 2 | A ˜ ( k f e ρ 2 ) | 2 ,
𝒫 M M , I P ( ρ 2 ) d ρ 1 A 2 ( ρ 1 ) | Ψ ( ρ 1 , ρ 2 ) | 2 A 2 ( ρ 2 ) | Ψ ( ρ 1 = ρ 2 , ρ 2 ) | 2 ,
𝒫 M M , F F ( ρ 2 ) d ρ 1 A 2 ( ρ 1 ) | d ρ 2 Ψ ( ρ 1 , ρ 2 ) exp ( i k f e ρ 2 ρ 2 ) | 2 ,
η H = N ¯ e N ¯ n τ ( S T S B G ) ,

Metrics