Abstract

Utilizing a broadly-tunable external cavity quantum cascade laser for scattering-type scanning near-field optical microscopy (s-SNOM), we measure infrared spectra of particles of explosives by probing characteristic nitro-group resonances in the 7.1–7.9 µm wavelength range. Measurements are presented with spectral resolution of 0.25 cm−1, spatial resolution of 25 nm, sensitivity better than 100 attomoles, and at a rapid acquisition time of 90 s per spectrum. We demonstrate high reproducibility of the acquired s-SNOM spectra with very high signal-to-noise ratios and relative noise of <0.02 in self-homodyne detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res.89(B7), 6329–6340 (1984).
    [CrossRef]
  2. J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
    [CrossRef]
  3. M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
    [CrossRef]
  4. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos Trans A Math Phys Eng Sci362(1817), 787–805 (2004).
    [CrossRef] [PubMed]
  5. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011).
    [CrossRef]
  6. S. Amarie and F. Keilmann, “Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B84(19), 199904 (2011).
    [CrossRef]
  7. Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
    [CrossRef] [PubMed]
  8. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
    [CrossRef]
  9. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15(14), 8550–8565 (2007).
    [CrossRef] [PubMed]
  10. X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013).
    [PubMed]
  11. M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
    [CrossRef] [PubMed]
  12. J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express16(3), 1529–1545 (2008).
    [CrossRef] [PubMed]
  13. B. Hauer, A. P. Engelhardt, and T. Taubner, “Quasi-analytical model for scattering infrared near-field microscopy on layered systems,” Opt. Express20(12), 13173–13188 (2012).
    [CrossRef] [PubMed]
  14. A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
    [CrossRef]
  15. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
    [CrossRef] [PubMed]
  16. X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
    [CrossRef]
  17. H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.
  18. P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express21(3), 2913–2919 (2013).
    [CrossRef] [PubMed]
  19. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Widerrecht, S. Hui Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B23(5), 823–833 (2006).
    [CrossRef]
  20. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
    [CrossRef]
  21. F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947 (2011).
    [CrossRef] [PubMed]
  22. I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
    [CrossRef]
  23. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
    [CrossRef]
  24. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
    [CrossRef]
  25. A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc.66(12), 1365–1384 (2012).
    [CrossRef] [PubMed]
  26. D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
    [CrossRef]
  27. J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
    [CrossRef]
  28. R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
    [CrossRef]
  29. S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
    [CrossRef]
  30. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
    [CrossRef]
  31. S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am. B20(10), 2117–2124 (2003).
    [CrossRef]
  32. R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
    [CrossRef] [PubMed]
  33. M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, “External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features,” Opt. Lett.32(9), 1177–1179 (2007).
    [CrossRef] [PubMed]
  34. M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
    [CrossRef] [PubMed]
  35. M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng.52(6), 061302 (2013).
    [CrossRef]
  36. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004).
    [CrossRef] [PubMed]
  37. H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
    [CrossRef] [PubMed]
  38. M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003).
    [CrossRef]
  39. M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
    [CrossRef]
  40. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
    [CrossRef] [PubMed]
  41. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
    [CrossRef]
  42. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  43. F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
    [CrossRef]
  44. R. A. Cendejas, M. C. Phillips, T. L. Myers, and M. S. Taubman, “Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector,” Opt. Express18(25), 26037–26045 (2010).
    [CrossRef] [PubMed]
  45. A. Röseler, “Spectroscopic Infrared Ellipsometry,” in Handbook of Ellipsometry (Materials Science and Process Technology), H. Tompkins and E. A. Irene, eds. (William Andrew, 2006).
  46. E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem.382(8), 1987–1992 (2005).
    [CrossRef] [PubMed]
  47. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  48. R. J. Karpowicz and T. B. Brill, “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid-phases,” J. Phys. Chem.88(3), 348–352 (1984).
    [CrossRef]
  49. P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
    [CrossRef]
  50. I. G. Goldberg and J. A. Swift, “New insights into the metastable beta form of RDX,” Cryst. Growth Des.12(2), 1040–1045 (2012).
    [CrossRef]

2013 (7)

X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013).
[PubMed]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
[CrossRef]

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng.52(6), 061302 (2013).
[CrossRef]

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express21(3), 2913–2919 (2013).
[CrossRef] [PubMed]

2012 (10)

B. Hauer, A. P. Engelhardt, and T. Taubner, “Quasi-analytical model for scattering infrared near-field microscopy on layered systems,” Opt. Express20(12), 13173–13188 (2012).
[CrossRef] [PubMed]

M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
[CrossRef] [PubMed]

A. Dazzi, C. B. Prater, Q. Hu, D. B. Chase, J. F. Rabolt, and C. Marcott, “AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization,” Appl. Spectrosc.66(12), 1365–1384 (2012).
[CrossRef] [PubMed]

I. G. Goldberg and J. A. Swift, “New insights into the metastable beta form of RDX,” Cryst. Growth Des.12(2), 1040–1045 (2012).
[CrossRef]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
[CrossRef]

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
[CrossRef]

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

2011 (5)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011).
[CrossRef]

S. Amarie and F. Keilmann, “Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B84(19), 199904 (2011).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
[CrossRef] [PubMed]

F. Lu and M. A. Belkin, “Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers,” Opt. Express19(21), 19942–19947 (2011).
[CrossRef] [PubMed]

2010 (3)

R. A. Cendejas, M. C. Phillips, T. L. Myers, and M. S. Taubman, “Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector,” Opt. Express18(25), 26037–26045 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

2009 (1)

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (3)

L. Gomez, R. Bachelot, A. Bouhelier, G. P. Widerrecht, S. Hui Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, “Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches,” J. Opt. Soc. Am. B23(5), 823–833 (2006).
[CrossRef]

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
[CrossRef]

2005 (2)

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem.382(8), 1987–1992 (2005).
[CrossRef] [PubMed]

2004 (4)

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
[CrossRef]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos Trans A Math Phys Eng Sci362(1817), 787–805 (2004).
[CrossRef] [PubMed]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004).
[CrossRef] [PubMed]

2003 (2)

2001 (1)

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

2000 (1)

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

1985 (1)

1984 (4)

R. J. Karpowicz and T. B. Brill, “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid-phases,” J. Phys. Chem.88(3), 348–352 (1984).
[CrossRef]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res.89(B7), 6329–6340 (1984).
[CrossRef]

1960 (1)

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

Adam, P. M.

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Aizpurua, J.

Alexander, R. W.

Amarie, S.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011).
[CrossRef]

S. Amarie and F. Keilmann, “Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B84(19), 199904 (2011).
[CrossRef]

Amenabar, I.

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

Andreev, G. O.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Aubert, S.

Bachelot, R.

Bao, W. Z.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Barchiesi, D.

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
[CrossRef]

Basov, D. N.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Bechtel, H. A.

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Belkin, M. A.

Bell, R. J.

Belyanin, A.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Bernacki, B.

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
[CrossRef]

Bernacki, B. E.

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng.52(6), 061302 (2013).
[CrossRef]

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

Bijeon, J. L.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Blaize, S.

Blake, T. A.

M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
[CrossRef]

Bouhelier, A.

Bour, D.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Brehm, M.

Brill, T. B.

R. J. Karpowicz and T. B. Brill, “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid-phases,” J. Phys. Chem.88(3), 348–352 (1984).
[CrossRef]

Brundermann, E.

D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
[CrossRef]

Bruyant, A.

Cannon, B. D.

Capasso, F.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Carminati, R.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Carney, P. S.

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

Castelli, A.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

Castro, M. E.

Castro-Neto, A. H.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Cendejas, R. A.

Chamberlain, R. T.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Chase, D. B.

Chu, P. M.

Clark, R. N.

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res.89(B7), 6329–6340 (1984).
[CrossRef]

Corzine, S.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Cotte, I.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Craig, I. M.

M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
[CrossRef]

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

Crozier, K. B.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Cubukcu, E.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Cvitkovic, A.

Dazzi, A.

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Diehl, L.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Diziain, S.

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

Dominguez, G.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Elsaesser, T.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Engelhardt, A. P.

Esteban, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
[CrossRef] [PubMed]

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Fei, Z.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Fikri, R.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Fogler, M. M.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Fredericks, W.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

García de Abajo, F. J.

Goldberg, I. G.

I. G. Goldberg and J. A. Swift, “New insights into the metastable beta form of RDX,” Cryst. Growth Des.12(2), 1040–1045 (2012).
[CrossRef]

Gomez, L.

Govyadinov, A.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

Govyadinov, A. A.

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

Gray, S. K.

Greffet, J. J.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Grosges, T.

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
[CrossRef]

Halik, M.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

Harootunian, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

Hauer, B.

Hebestreit, E.

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

Hermann, P.

Hernández, S. P.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Hillenbrand, R.

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
[CrossRef]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos Trans A Math Phys Eng Sci362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Hinrichs, K.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Hoehl, A.

Höfler, G.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Hu, Q.

Hua, F.

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
[CrossRef]

Hudlet, S.

S. Aubert, A. Bruyant, S. Blaize, R. Bachelot, G. Lerondel, S. Hudlet, and P. Royer, “Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy,” J. Opt. Soc. Am. B20(10), 2117–2124 (2003).
[CrossRef]

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Hui Chang, S.

Huth, F.

P. Hermann, A. Hoehl, P. Patoka, F. Huth, E. Rühl, and G. Ulm, “Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation,” Opt. Express21(3), 2913–2919 (2013).
[CrossRef] [PubMed]

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

Isaacson, M.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

Jeon, S.

Johnson, P. A.

Johnson, T. J.

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc.58(12), 1452–1461 (2004).
[CrossRef] [PubMed]

Josberger, E. E.

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

Karpowicz, R. J.

R. J. Karpowicz and T. B. Brill, “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid-phases,” J. Phys. Chem.88(3), 348–352 (1984).
[CrossRef]

Keilmann, F.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011).
[CrossRef]

S. Amarie and F. Keilmann, “Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B84(19), 199904 (2011).
[CrossRef]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos Trans A Math Phys Eng Sci362(1817), 787–805 (2004).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Kern, K.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
[CrossRef] [PubMed]

Kim, D. H.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Knoll, W.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Kopf, I.

D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
[CrossRef]

Korte, E. H.

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem.382(8), 1987–1992 (2005).
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Lareau, R.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Lau, C. N.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Lerondel, G.

Lewis, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

Lienau, C.

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003).
[CrossRef]

Long, L. L.

Lu, F.

Marcott, C.

Martin, M. C.

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

McLeod, A. S.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Mercado, L.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Mina, N.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Molina, L.

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Muller, E. A.

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

Myers, T. L.

Nuansing, W.

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15(14), 8550–8565 (2007).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
[CrossRef]

Olmon, R. L.

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Ordal, M. A.

Patoka, P.

Phillips, M. C.

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng.52(6), 061302 (2013).
[CrossRef]

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
[CrossRef]

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

M. C. Phillips and M. S. Taubman, “Intracavity sensing via compliance voltage in an external cavity quantum cascade laser,” Opt. Lett.37(13), 2664–2666 (2012).
[CrossRef] [PubMed]

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
[CrossRef]

R. A. Cendejas, M. C. Phillips, T. L. Myers, and M. S. Taubman, “Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector,” Opt. Express18(25), 26037–26045 (2010).
[CrossRef] [PubMed]

M. C. Phillips, T. L. Myers, M. D. Wojcik, and B. D. Cannon, “External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features,” Opt. Lett.32(9), 1177–1179 (2007).
[CrossRef] [PubMed]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Pollard, B.

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Porto, J. A.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Prater, C. B.

Pristera, F.

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

Querry, M. R.

Rabolt, J. F.

Rang, M.

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

Raschke, M. B.

X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013).
[PubMed]

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003).
[CrossRef]

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

Rhoderick, G. C.

Rogers, J. A.

Röseler, A.

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem.382(8), 1987–1992 (2005).
[CrossRef] [PubMed]

Roush, T. L.

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res.89(B7), 6329–6340 (1984).
[CrossRef]

Royer, P.

Rühl, E.

S McLeod, A.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Sams, R. L.

Santana, A.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Schmidt, D. A.

D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
[CrossRef]

Sharpe, S. W.

Stashkevich, A.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Stefanon, I.

Stewart, M. K.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Suter, J. D.

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
[CrossRef]

Swift, J. A.

I. G. Goldberg and J. A. Swift, “New insights into the metastable beta form of RDX,” Cryst. Growth Des.12(2), 1040–1045 (2012).
[CrossRef]

Tauber, M. J.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Taubman, M. S.

Taubner, T.

Thiemens, M.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Torres, P.

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

Ulm, G.

Vogelgesang, R.

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
[CrossRef] [PubMed]

Walford, J. N.

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

Wang, C.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Widerrecht, G. P.

Wojcik, A. K.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Wojcik, M. D.

Xu, X. G.

X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013).
[PubMed]

Xu, X. J. G.

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

Yang, H. U.

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

Yu, N.

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Zhang, L. M.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Zhang, M.

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Zhao, Z.

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

E. H. Korte and A. Röseler, “Infrared reststrahlen revisited: commonly disregarded optical details related to n<1,” Anal. Bioanal. Chem.382(8), 1987–1992 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

F. Pristera, M. Halik, A. Castelli, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem.32(4), 495–508 (1960).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

S. Diziain, D. Barchiesi, T. Grosges, and P. M. Adam, “Recovering of the apertureless scanning near-field optical microscopy signal through a lock-in detection,” Appl. Phys. B84(1-2), 233–238 (2006).
[CrossRef]

J. D. Suter, B. Bernacki, and M. C. Phillips, “Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers,” Appl. Phys. B108(4), 965–974 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett.89(10), 101124 (2006).
[CrossRef]

M. B. Raschke and C. Lienau, “Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering,” Appl. Phys. Lett.83(24), 5089–5091 (2003).
[CrossRef]

Appl. Spectrosc. (2)

ChemPhysChem (1)

M. B. Raschke, L. Molina, T. Elsaesser, D. H. Kim, W. Knoll, and K. Hinrichs, “Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution,” ChemPhysChem6(10), 2197–2203 (2005).
[CrossRef] [PubMed]

Cryst. Growth Des. (1)

I. G. Goldberg and J. A. Swift, “New insights into the metastable beta form of RDX,” Cryst. Growth Des.12(2), 1040–1045 (2012).
[CrossRef]

J. Appl. Phys. (1)

J. N. Walford, J. A. Porto, R. Carminati, J. J. Greffet, P. M. Adam, S. Hudlet, J. L. Bijeon, A. Stashkevich, and P. Royer, “Influence of tip modulation on image formation in scanning near-field optical microscopy,” J. Appl. Phys.89(9), 5159–5169 (2001).
[CrossRef]

J. Geophys. Res. (1)

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res.89(B7), 6329–6340 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

R. J. Karpowicz and T. B. Brill, “Comparison of the molecular-structure of hexahydro-1,3,5-trinitro-s-triazine in the vapor, solution, and solid-phases,” J. Phys. Chem.88(3), 348–352 (1984).
[CrossRef]

J. Phys. Chem. B (1)

P. Torres, L. Mercado, I. Cotte, S. P. Hernández, N. Mina, A. Santana, R. T. Chamberlain, R. Lareau, and M. E. Castro, “Vibrational spectroscopy study of β and α RDX deposits,” J. Phys. Chem. B108(26), 8799–8805 (2004).
[CrossRef]

J. Phys. Chem. Lett. (2)

A. A. Govyadinov, I. Amenabar, F. Huth, P. S. Carney, and R. Hillenbrand, “Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy,” J. Phys. Chem. Lett.4(9), 1526–1531 (2013).
[CrossRef]

X. J. G. Xu, M. Rang, I. M. Craig, and M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett.3(13), 1836–1841 (2012).
[CrossRef]

Laser Photonics Rev. (1)

D. A. Schmidt, I. Kopf, and E. Brundermann, “A matter of scale: from far-field microscopy to near-field nanoscopy,” Laser Photonics Rev.6(3), 296–332 (2012).
[CrossRef]

Nano Lett. (3)

F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, and R. Hillenbrand, “Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution,” Nano Lett.12(8), 3973–3978 (2012).
[CrossRef] [PubMed]

X. G. Xu and M. B. Raschke, “Near-field infrared vibrational dynamics and tip-enhanced decoherence,” Nano Lett.13(4), 1588–1595 (2013).
[PubMed]

Z. Fei, G. O. Andreev, W. Z. Bao, L. M. Zhang, A. S McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface,” Nano Lett.11(11), 4701–4705 (2011).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun.232(1-6), 15–23 (2004).
[CrossRef]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Opt. Eng. (1)

M. C. Phillips and B. E. Bernacki, “Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser,” Opt. Eng.52(6), 061302 (2013).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Philos Trans A Math Phys Eng Sci (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos Trans A Math Phys Eng Sci362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Phys. Rev. B (3)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B83(4), 045404 (2011).
[CrossRef]

S. Amarie and F. Keilmann, “Erratum: Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B84(19), 199904 (2011).
[CrossRef]

M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, “Near-field spectroscopy of silicon dioxide thin films,” Phys. Rev. B85(7), 075419 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett.102(1), 013901 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. C. Phillips, I. M. Craig, and T. A. Blake, “Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser,” Proc. SPIE8631, 86310C (2013).
[CrossRef]

M. C. Phillips, J. D. Suter, B. E. Bernacki, and T. J. Johnson, “Challenges of infrared reflective spectroscopy of solid-phase explosives and chemicals on surfaces,” Proc. SPIE8358, 83580T(2012).
[CrossRef]

Proc. SPIE (1)

I. M. Craig, M. C. Phillips, M. S. Taubman, E. E. Josberger, and M. B. Raschke, “Infrared scattering scanning near-field optical microscopy using an external cavity quantum cascade laser for nanoscale chemical imaging and spectroscopy of explosive residues,” Proc. SPIE8631, 863110 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Rev. Sci. Instrum. (1)

H. U. Yang, E. Hebestreit, E. E. Josberger, and M. B. Raschke, “A cryogenic scattering-type scanning near-field optical microscope,” Rev. Sci. Instrum.84(2), 023701 (2013).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Ultramicroscopy (2)

R. Esteban, R. Vogelgesang, and K. Kern, “Apertureless near-field optical microscopy: differences between heterodyne interferometric and non-interferometric images,” Ultramicroscopy111(9-10), 1469–1474 (2011).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, “Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy13(3), 227–231 (1984).
[CrossRef]

Other (2)

H. A. Bechtel, R. L. Olmon, E. A. Muller, B. Pollard, M. C. Martin, and M. B. Raschke, “Ultra-broadband infrared nano-spectroscopy with a synchrotron source,” In preparation.

A. Röseler, “Spectroscopic Infrared Ellipsometry,” in Handbook of Ellipsometry (Materials Science and Process Technology), H. Tompkins and E. A. Irene, eds. (William Andrew, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the experimental layout. The external cavity quantum cascade laser (ECQCL) beam is reflected from a barium fluoride (BaF2) wedged beam splitter (BS). The light is focused onto an AFM tip using a 90° off-axis parabolic reflector (OAP). The back-scattered light is collected using the same OAP and then focused onto a liquid-nitrogen cooled mercury cadmium telluride detector (MCT). The tip modulated AC s-SNOM signal is demodulated at a harmonic of the tip dither frequency with a lock-in amplifier, while the unmodulated DC signal is digitized with an analog-to-digital converter (ADC). (b) Tuning curve for the ECQCL, with a maximum power of ~15mW. The sharp dips are due to atmospheric water absorption. (c) Expansion of the tuning curve in the region marked by the box in (b). Oscillations in the power are due to mode-hops within the ECQCL.

Fig. 2
Fig. 2

(a) Comparison of the tip-scattered near-field signal demodulated at 3Ω (x3,Au, gold) and the far-field scattered DC signal (DC, blue) from a bare gold substrate. Each has been scaled to allow direct comparison of the spectral shapes. (b) Ratio of the signals in (a).

Fig. 3
Fig. 3

Nano-spectroscopy of tetryl. (a) AFM tapping mode topography image of a deposit of tetryl on gold. After imaging, the tip was moved to each point indicated in succession and spectra were collected. (b) Normalized s-SNOM spectra for gold taken at positions 2 and 7, referenced to spectrum from position 1. (c) Normalized s-SNOM spectra from positions 3–6 on top of the tetryl island.

Fig. 4
Fig. 4

Near-field chemical imaging of RDX. (a) AFM Z topography map of a particle of RDX on gold. (b)–(c) s-SNOM contrast images taken at two different frequencies as indicated in the spectrum in (d), plotted as C3,RDX = 1 - (X3,RDX/X3,Au) (unitless). The color bar in (b) applies to both optical images, and the scale bar in (c) applies to all three images. (d) Normalized spectrum taken at center of the RDX. Both the optical images and the spectrum have been normalized to the incident laser intensity and the spectrum from gold. (e) Line scans across the diagonal of each image (indicated by dashed lines with a dot at the 0 position).

Fig. 5
Fig. 5

s-SNOM scan of PETN referenced to gold. (a) Complete spectrum showing sharp, asymmetric dispersive line shapes. (b) The same spectrum zoomed in to the peaks of interest. The blue curve is the acquired spectrum while the black curve shows the effect of spectral smoothing to an approximate resolution of 2.4 cm−1. The open black circles show points on the moving average spaced every 12 points. The smoothed curve reproduces all but the sharpest features of the curve, but the discrete points badly alias the spectrum and are insufficient to capture the spectral features.

Fig. 6
Fig. 6

Comparison of near-field and far-field spectra of explosives. The top row shows the experimental s-SNOM data from Figs. 35. The second row shows experimental RAIRS spectra measured at grazing incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I det (Ω,ω)| σ bg (ω) | 2 +| σ sig (Ω,ω) | 2 +2| σ bg (ω)|| σ sig (Ω,ω)|cos[ φ bg (ω) φ sig (Ω,ω)].
x 3,Sig / DC Sig x 3,Au / DC Au = X 3,Sig X 3,Au = | σ Sig |cos( φ Sig φ Au ) | σ Au | Re[ s 3,Sig s 3,Au ],

Metrics