Abstract

Photorefractive polymers have been extensively studied for over two decades and have found applications in holographic displays and optical image processing. The complexity of these materials arises from multiple charge contributions, for example, leading to the formation of competing photorefractive gratings. It has been recently shown that in a photorefractive polymer at relatively moderate applied electric fields the primary charge carriers (holes) establish an initial grating, followed by a subsequent competing grating (electrons) resulting in a decreased two-beam coupling and diffraction efficiencies. In this paper, it is shown that with relatively large sustainable bias fields, the two-beam coupling efficiency is enhanced owing to a decreased electron contribution. These results also explain the cause of dielectric breakdown experienced under large bias fields. Our conclusions are supported by self-pumped transient two-beam coupling and photocurrent measurements as a function of applied bias fields at different wavelengths.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).
  2. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
    [CrossRef] [PubMed]
  3. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Systematics of two-wave mixing in a photorefractive polymer,” J. Opt. Soc. Am. B15, 905–913 (1998).
    [CrossRef]
  4. W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
    [CrossRef]
  5. C. W. Christenson, “Improving sensitivity of photorefractive polymer composites for holographic display applicaitons,” Ph.D. thesis, The University of Arizona (2011).
  6. P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
    [CrossRef]
  7. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev.94, 127–155 (1994).
    [CrossRef]
  8. M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
    [CrossRef]
  9. L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
    [CrossRef]
  10. M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
    [CrossRef]
  11. D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
    [CrossRef]
  12. S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, E. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett.17, 1107–1109 (1992).
    [CrossRef] [PubMed]
  13. A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
    [CrossRef]
  14. N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
    [CrossRef]
  15. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002).
    [CrossRef]
  16. E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
    [CrossRef]
  17. J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
    [CrossRef]

2012

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

2010

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

2008

J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
[CrossRef]

2007

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

2003

W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
[CrossRef]

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

2002

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

2001

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

2000

L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
[CrossRef]

1998

1994

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev.94, 127–155 (1994).
[CrossRef]

1992

1991

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).

1990

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Abdeldayem, H. A.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Allen, A. S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Banerjee, P. P.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

Barker, R. C.

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Bartsch, E.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002).
[CrossRef]

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

Bashaw, M. C.

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Basun, S. A.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Bjorklund, G. C.

Blanche, P. A.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Buller, S. H.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

Bunning, T. J.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Christenson, C. W.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

C. W. Christenson, “Improving sensitivity of photorefractive polymer composites for holographic display applicaitons,” Ph.D. thesis, The University of Arizona (2011).

Cook, G.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Dube, R. R.

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).

Eckert, T.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

Evans, D. R.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Frazier, D. O.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Gallego-Gomez, F.

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

Grunnet-Jepsen, A.

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Guha, S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Hache, E.

Hsieh, W. Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Jahr, T.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Kim, N.

J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
[CrossRef]

Kim, W. S.

W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
[CrossRef]

Köber, S.

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Kukhtareva, T. V.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Lee, C.

J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
[CrossRef]

Lee, J. W.

W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
[CrossRef]

Liebig, C. M.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Ma, T. P.

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Matray, T. J.

Meerholz, K.

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

Moerner, W. E.

Mroczkowski, S.

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Ng, M. K.

L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
[CrossRef]

Norwood, R. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Oh, J. W.

J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
[CrossRef]

Park, J. K.

W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
[CrossRef]

Penn, B. G.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Peyghambarian, N.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Pottenger, T. P.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Rachwal, B.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Saleh, M. A.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

Salvador, M.

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

Scott, J. C.

S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, E. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett.17, 1107–1109 (1992).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).

Siddiqui, O.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Silence, S. M.

Sillescu, H.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

Thomas, J.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Thompson, C. L.

Twieg, R. J.

S. M. Silence, C. A. Walsh, J. C. Scott, T. J. Matray, R. J. Twieg, E. Hache, G. C. Bjorklund, and W. E. Moerner, “Subsecond grating growth in a photorefractive polymer,” Opt. Lett.17, 1107–1109 (1992).
[CrossRef] [PubMed]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).

Veniaminov, A.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

Veniaminov, A. V.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002).
[CrossRef]

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Walsh, C. A.

Wang, L.

L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
[CrossRef]

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Witherow, W. K.

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Yamamoto, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Yu, L.

L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
[CrossRef]

Appl. Phys. Lett.

W. S. Kim, J. W. Lee, and J. K. Park, “Enhancement of the recording stability of a photorefractive polymer composite by the introduction of a trapping layer,” Appl. Phys. Lett.83, 3045–3047 (2003).
[CrossRef]

M. Salvador, F. Gallego-Gomez, S. Köber, and K. Meerholz, “Bipolar charge transport in an organic photorefractive composite,” Appl. Phys. Lett.90, 154102 (2007).
[CrossRef]

Chem. Rev.

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev.94, 127–155 (1994).
[CrossRef]

IEEE J. Quantum Electron.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron.38, 1661–1665 (2002).
[CrossRef]

J. Appl. Phys.

P. P. Banerjee, S. H. Buller, C. M. Liebig, G. Cook, D. R. Evans, P. A. Blanche, C. W. Christenson, J. Thomas, and N. Peyghambarian, “Time dynamics of self-pumped reection gratings in a photorefractive polymer,” J. Appl. Phys.111, 013108 (2012).
[CrossRef]

J. W. Oh, C. Lee, and N. Kim, “Infuence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites,” J. Appl. Phys.104, 073709 (2008).
[CrossRef]

J. Opt. A Pure Appl. Opt.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthre-nequinone in polycarbonate,” J. Opt. A Pure Appl. Opt.4, 387–392 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Macromol. Symp.

E. Bartsch, T. Jahr, T. Eckert, H. Sillescu, and A. Veniaminov, “Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique,” Macromol. Symp.191, 151–166 (2003).
[CrossRef]

Macromolecules

A. Veniaminov, T. Jahr, H. Sillescu, and E. Bartsch, “Length scale dependent probe diffusion in drying acrylate latex films,” Macromolecules35, 808–819 (2002).
[CrossRef]

Nature

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature468, 80–83 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

L. Wang, M. K. Ng, and L. Yu, “Photorefraction and complementary grating competition in bipolar transport molecular material,” Phys. Rev. B62, 4973–4984 (2000).
[CrossRef]

M. C. Bashaw, T. P. Ma, R. C. Barker, S. Mroczkowski, and R. R. Dube, “Introduction, revelation, and evolution of complementarygratings in photorefractive bismuth silicon oxide,” Phys. Rev. B42, 5641–5649 (1990).
[CrossRef]

Phys. Rev. E

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. E66, 1846–1849 (1991).

Proc. SPIE

N. V. Kukhtarev, T. V. Kukhtareva, H. A. Abdeldayem, W. K. Witherow, B. G. Penn, D. O. Frazier, and A. V. Veniaminov, “Holographic recording in polymeric materials with diffusional amplification,” Proc. SPIE4459, 29–38 (2001).
[CrossRef]

Other

C. W. Christenson, “Improving sensitivity of photorefractive polymer composites for holographic display applicaitons,” Ph.D. thesis, The University of Arizona (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

PR polymer in self-pumped two-beam coupling geometry. The signal beam, represented by the small white arrow, is due to the counter-propagating Fresnel reflection of the incident pump beam. The small black arrow transmitted pump beam. The vertical black lines within the polymer represent the photorefractive index grating.

Fig. 2
Fig. 2

Time dynamics of the grating formation using (left) 532 nm and (right) 633 nm light to record the gratings as a function of applied fields: in order from top to bottom - (black) 30 V/μm, (red) 40 V/μm, (green) 50 V/μm, (gray) 60 V/μm, and (blue) 70 V/μm. The scales on both graphs (left and right) are identical; the inset is the 532 nm data rescaled.

Fig. 3
Fig. 3

Time response of the PR polymer gratings formed using 532 nm light with different bias voltages: A) 60 V/μm, B) 65 V/μm, C) 70 V/μm, and D) 75 V/μm. The region of gain enhancement is seen in plot D.

Fig. 4
Fig. 4

The absorption compensated photocurrent as a function of applied electric field (20 V/μm to 70 V/μm): (red circles/lines) 633 nm and (green squares/lines) 532 nm. Inset: Absorption spectrum with zero field applied (uncorrected for reflection of glass windows and polymer material).

Fig. 5
Fig. 5

Change in beam coupling efficiency (in terms of change in optical density, ΔOD) as a function of the applied electric field using 532 nm (Green Squares/Line) and 633 nm (Red Circles/Line) light. Note the threshold voltages for the onset of the nonlinear gain enhancement: ≈40 V/μm using 633 nm recording light and ≈70 V/μm using 532 nm recording light.

Fig. 6
Fig. 6

Time dynamics of the grating formation using 633 nm light as a function of applied fields: (a) 40 V/μm, (b) 50 V/μm, (c) 60 V/μm, and (d) 70 V/μm. The data was fit with a single exponential, while ignoring the competing grating contribution. One time constant is responsible for the initial hole-formed grating and the long timescale nonlinear gain enhanced component.

Metrics