Abstract

We report a design and demonstration of an electro-optically Q-switched intracavity optical parametric oscillator (IOPO) based on a unique ramped duty-cycle periodically poled lithium niobate (PPLN) in a diode-pumped 1064-nm Nd:YVO4 laser. The PPLN crystal, having a double-prism domain (DPD) structure with a domain period of 30 μm, can work simultaneously as an electro-optic (EO) beam deflector (and therefore an EO Q-switch in the laser cavity) and an optical parametric down converter. The characterized deflection sensitivity of the DPD PPLN device was 1.15°/kV-cm. At a 180-V Q-switching voltage and a 1-kHz switching rate, we measured a down-converted signal at 1550 nm with pulse energy of >8.1 μJ (or peak power of >2.3 kW) from the constructed IOPO at 7.5-W diode pump power. Continuous wavelength tuning of the IOPO signal was also demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
    [CrossRef]
  2. Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, Y. C. Huang, and Y. H. Chen, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch,” Opt. Lett.32(5), 545–547 (2007).
    [CrossRef] [PubMed]
  3. T. Taira and T. Kobayashi, “Intracavity frequency doubling and Q switching in diode-laser-pumped Nd:YVO4 lasers,” Appl. Opt.34(21), 4298–4301 (1995).
    [CrossRef] [PubMed]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
    [CrossRef]
  5. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett.28(16), 1460–1462 (2003).
    [CrossRef] [PubMed]
  6. Y. H. Chen, W. K. Chang, C. L. Chang, and C. H. Lin, “Single aperiodically poled lithium niobate for simultaneous laser Q switching and second-harmonic generation in a 1342 nm Nd:YVO4 laser,” Opt. Lett.34(11), 1711–1713 (2009).
    [CrossRef] [PubMed]
  7. W. K. Chang, Y. H. Chen, H. H. Chang, J. W. Chang, C. Y. Chen, Y. Y. Lin, Y. C. Huang, and S. T. Lin, “Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 Laser,” Opt. Express19(24), 23643–23651 (2011).
    [CrossRef] [PubMed]
  8. S. T. Lin, G. W. Chang, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and Y. H. Chen, “Monolithically integrated laser Bragg Q-switch and wavelength converter in a PPLN crystal,” Opt. Express15(25), 17093–17098 (2007).
    [CrossRef] [PubMed]
  9. D. Djukic, R. Roth, J. T. Yardley, R. M. Osgood, S. Bakhru, and H. Bakhru, “Low-voltage planar-waveguide electrooptic prism scanner in crystal-ion-sliced thin-film LiNbO3,” Opt. Express12(25), 6159–6164 (2004).
    [CrossRef] [PubMed]
  10. M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
    [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), section 8.6.
  12. Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
    [CrossRef]
  13. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett.22(20), 1553–1555 (1997).
    [CrossRef] [PubMed]
  14. J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
    [CrossRef]
  15. L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate, Ph.D. dissertation (Stanford University, 1995).
  16. Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol.17(1), 108–114 (1999).
    [CrossRef]
  17. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron.15(6), 415–431 (1979).
    [CrossRef]

2011

2009

2008

M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
[CrossRef]

2007

2004

2003

1999

1998

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

1997

1995

1994

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

1979

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron.15(6), 415–431 (1979).
[CrossRef]

1967

J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Bakhru, H.

Bakhru, S.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron.15(6), 415–431 (1979).
[CrossRef]

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron.15(6), 415–431 (1979).
[CrossRef]

Chang, C. L.

Chang, G. W.

Chang, H. H.

Chang, J. W.

Chang, W. K.

Chen, C. Y.

Chen, D.

J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
[CrossRef]

Chen, Q.

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Chen, Y. H.

Chiang, A. C.

Chiu, Y.

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol.17(1), 108–114 (1999).
[CrossRef]

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Conroy, R. S.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Djukic, D.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Friel, G. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Gopalan, V.

M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
[CrossRef]

Huang, Y. C.

Jundt, D. H.

Kemp, A. J.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Kobayashi, T.

Krishnamurthi, M.

M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
[CrossRef]

Lambeth, D. N.

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Ley, J. M.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Lin, C. H.

Lin, S. T.

Lin, Y. Y.

Osgood, R. M.

Otto, C. N.

J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Roth, R.

Schlesinger, T. E.

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol.17(1), 108–114 (1999).
[CrossRef]

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Sinclair, B. D.

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Stancil, D. D.

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol.17(1), 108–114 (1999).
[CrossRef]

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Taira, T.

Tian, L.

M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
[CrossRef]

Yardley, J. T.

Zook, J. D.

J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
[CrossRef]

Zou, J.

Appl. Opt.

Appl. Phys. B

G. J. Friel, R. S. Conroy, A. J. Kemp, B. D. Sinclair, and J. M. Ley, “Q-switching of a diode-pumped Nd:YVO4 laser using a quadrupole electro-optic deflector,” Appl. Phys. B67(2), 267–270 (1998).
[CrossRef]

Appl. Phys. Lett.

M. Krishnamurthi, L. Tian, and V. Gopalan, “Design and simulation of planar electro-optic switches in ferroelectrics,” Appl. Phys. Lett.93(5), 052912 (2008).
[CrossRef]

J. D. Zook, D. Chen, and C. N. Otto, “Temperature dependence and model of the electro-optic effect in LiNbO3,” Appl. Phys. Lett.11(5), 159–161 (1967).
[CrossRef]

IEEE J. Quantum Electron.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron.15(6), 415–431 (1979).
[CrossRef]

J. Lightwave Technol.

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, “Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,” J. Lightwave Technol.12(8), 1401–1404 (1994).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, “Shape-optimized electrooptic beam scanners: analysis, design, and simulation,” J. Lightwave Technol.17(1), 108–114 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127(6), 1918–1939 (1962).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystal (Wiley, 1984), section 8.6.

L. E. Myers, Quasi-Phasematched Optical Parametric Oscillators in Bulk Periodically Poled Lithium Niobate, Ph.D. dissertation (Stanford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of (a) a double-prism domain (DPD) structure, (b) a DPD (or ramped duty-cycle) PPLN, and (c) a device cascading a single DPD EO beam deflector and an ordinary (50%-duty-cycle) PPLN OPDC. (d) A typical microscopic image of an HF-etched z surface of our fabricated DPD/ramped duty-cycle PPLN.

Fig. 2
Fig. 2

2D Fourier spectrum of the ramped duty-cycle PPLN domain structure as shown in Fig. 1(b).

Fig. 3
Fig. 3

(a) Measured deflection angle of the DPD PPLN device as a function of the applied voltage for several different beam sizes at 40°C. The inset shows the measured deflection angle of the device as a function of the applied voltage for several different working temperatures for a beam of beam size w~300 μm. The solid lines represent the theoretical fits. (b) Measured deflection efficiency and the corresponding deflection angle of the DPD PPLN device as a function of the applied voltage for a beam of beam size w~300 μm at 40°C. The inset shows the captured mode profiles of the beam after traversing the device when 0, 300, and 600 volts were applied, respectively.

Fig. 4
Fig. 4

Schematic arrangement of a pulsed IOPO constructed in a diode-pumped 1064-nm Nd:YVO4 laser using the fabricated DPD/ramped duty-cycle PPLN as simultaneously the laser Q-switch and the OPDC.

Fig. 5
Fig. 5

(a) Measured output pulse energy and pulse width of the IOPO signal at 1550 nm and at 40°C as a function of the diode pump power. The inset shows a typical trace of the measured signal pulse train at 7.5-W diode pump power. (b) Measured output signal spectra of the IOPO and IOPG at 7.5-W diode power at 40°C.

Fig. 6
Fig. 6

Temperature tuning of the IOPO signal wavelength (green dots). The idler wavelengths (blue squares) were calculated according to the energy conservation law. The red line represents the theoretical fit.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ = 2 l e f f w N Δ n e = L e f f w n e 3 r 33 E z = L D n e 3 r 33 E z ,
dθ dT =3 L D n e 3 r 33 E z ( 1 n e d n e dT + 1 3 r 33 d r 33 dT ),
d r ( f x , f y ) = 1 A | A s ( x , y ) e i 2 π ( f x x + f y y ) d x d y | ,

Metrics