Abstract

The wavelength band near 1300 nm is attractive for many telecommunications applications, yet there are few results in silicon that demonstrate high-speed modulation in this band. We present the first silicon modulator to operate at 50 Gbps near 1300 nm. We demonstrate an open eye at this speed using a differential 1.5 Vpp signal at 0 V reverse bias, achieving an energy efficiency of 450 fJ/bit.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  2. T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
    [CrossRef]
  3. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
    [CrossRef]
  4. X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express21(10), 12776–12782 (2013).
    [CrossRef] [PubMed]
  5. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express21(4), 4116–4125 (2013).
    [CrossRef] [PubMed]
  6. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
    [CrossRef] [PubMed]
  7. J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator,” J. Lightwave Technol.31(14), 2434–2440 (2013).
    [CrossRef]
  8. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express21(3), 3818–3825 (2013).
    [CrossRef] [PubMed]
  9. F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
    [CrossRef]
  10. J. Fujikata, S. Takahashi, M. Takahashi, and T. Horikawa, “High speed and highly efficient Si optical modulator with MOS junction for 1.55 µm and 1.3 µm wavelengths,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 65–66.
  11. T. Koonen, “Fiber to the home/fiber to the premises: what, where and when?” Proc. IEEE94(5), 911–934 (2006).
    [CrossRef]
  12. Y. Tang, J. Peters, and J. E. Bowers, “1.3 μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2012), paper PDP5A.5.
    [CrossRef]
  13. L. Lever, Y. Hu, M. Myronov, X. Liu, N. Owens, F. Y. Gardes, I. P. Marko, S. J. Sweeney, Z. Ikonić, D. R. Leadley, G. T. Reed, and R. W. Kelsall, “Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon,” Opt. Lett.36(21), 4158–4160 (2011).
    [CrossRef] [PubMed]
  14. S. Jain, Y. Tang, S. Srinivasan, M. J. R. Heck, and J. E. Bowers, “Integrated high speed hybrid silicon transmitter,” in SPIE OPTO (International Society for Optics and Photonics, San Francisco, California, 2013), 863016.
  15. T. Baehr-Jones, “OpSIS-IME OI50 Process – Performance Summary,” http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary_10_8_13.pdf .
  16. J.-M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 6.
  17. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express20(3), 3209–3218 (2012).
    [CrossRef] [PubMed]
  18. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  19. http://opsisfoundry.org/
  20. A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 7–8.
    [CrossRef]
  21. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
    [CrossRef] [PubMed]
  22. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol.30(11), 1602–1609 (2012).
    [CrossRef]
  23. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
    [CrossRef]
  24. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
    [CrossRef] [PubMed]
  25. D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
    [CrossRef]
  26. M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
    [CrossRef] [PubMed]
  27. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  28. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012).
    [CrossRef] [PubMed]

2013 (5)

2012 (7)

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express20(3), 3209–3218 (2012).
[CrossRef] [PubMed]

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol.30(11), 1602–1609 (2012).
[CrossRef]

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
[CrossRef] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (4)

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

2007 (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

2006 (1)

T. Koonen, “Fiber to the home/fiber to the premises: what, where and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

Alic, N.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Ayazi, A.

Baehr-Jones, T.

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Bogaerts, W.

Bouville, D.

Cassan, E.

Chen, H.

Chen, L.

Chen, Y.-K.

Chetrit, Y.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Chu, T.

Cohen, R.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Crozat, P.

Danziger, S.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Ding, J.

Ding, R.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

Dong, P.

Emerson, N. G.

Fang, Q.

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express21(10), 12776–12782 (2013).
[CrossRef] [PubMed]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Fedeli, J. M.

Fedeli, J.-M.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Fédéli, J.-M.

Fournier, M.

Galland, C.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Gardes, F. Y.

Grosse, P.

Harris, N. C.

Hochberg, M.

Hu, Y.

Ikonic, Z.

Izhaky, N.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Ji, R.

Kelsall, R. W.

Koonen, T.

T. Koonen, “Fiber to the home/fiber to the premises: what, where and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

Kuo, B. P. P.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Leadley, D. R.

Lee, P.

Lever, L.

Li, X.

Li, Z.

Liao, L.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Lim, A. E.-J.

Liow, T.-Y.

Liu, A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Liu, X.

Liu, Y.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

Lo, G.-Q.

Lo, P. G.-Q.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Lu, Y.

Luo, X.

Marko, I. P.

Marris-Morini, D.

Mashanovich, G.

Mashanovich, G. Z.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Min, R.

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Myronov, M.

Myslivets, E.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Nguyen, H.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Novack, A.

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Owens, N.

Paniccia, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Pinguet, T.

Prather, D.

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Radic, S.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Rasigade, G.

Reed, G. T.

Rubin, D.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Song, J.

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Streshinsky, M.

Sweeney, S. J.

Teo, S. H.-G.

Thomson, D.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Thomson, D. J.

Tian, Y.

Tu, X.

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Vivien, L.

Witzens, J.

Xiao, X.

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Xu, H.

Xuan, Z.

Yang, L.

Yu, H.

Yu, J.

Yu, M.

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Yu, Y.

Zhang, L.

Zhang, Y.

Zhou, P.

Zhu, W.

Ziebell, M.

Zlatanovic, S.

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

Electron. Lett. (1)

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

D. Thomson, F. Y. Gardes, J.-M. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photonics Technol. Lett.24(4), 234–236 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

T. Baehr-Jones, T. Pinguet, P. G.-Q. Lo, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumors of silicon photonics,” Nat. Photonics6(4), 206–208 (2012).
[CrossRef]

Opt. Express (10)

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express21(10), 12776–12782 (2013).
[CrossRef] [PubMed]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization,” Opt. Express21(4), 4116–4125 (2013).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express21(3), 3818–3825 (2013).
[CrossRef] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express20(10), 10591–10596 (2012).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J. M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express20(6), 6163–6169 (2012).
[CrossRef] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
[CrossRef] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express20(3), 3209–3218 (2012).
[CrossRef] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Photonics News (1)

M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “The road to affordable, large scale silicon photonics,” Opt. Photonics News24(9), 32–39 (2013).
[CrossRef]

Proc. IEEE (1)

T. Koonen, “Fiber to the home/fiber to the premises: what, where and when?” Proc. IEEE94(5), 911–934 (2006).
[CrossRef]

Other (7)

Y. Tang, J. Peters, and J. E. Bowers, “1.3 μm hybrid silicon electroabsorption modulator with bandwidth beyond 67 GHz,” in Optical Fiber Communication Conference (Optical Society of America, Los Angeles, California, 2012), paper PDP5A.5.
[CrossRef]

http://opsisfoundry.org/

A. Novack, Y. Liu, R. Ding, M. Gould, T. Baehr-Jones, Q. Li, Y. Yang, Y. Ma, Y. Zhang, K. Padmaraju, K. Bergmen, A. E.-J. Lim, G.-Q. Lo, and M. Hochberg, “A 30 GHz silicon photonic platform,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 7–8.
[CrossRef]

S. Jain, Y. Tang, S. Srinivasan, M. J. R. Heck, and J. E. Bowers, “Integrated high speed hybrid silicon transmitter,” in SPIE OPTO (International Society for Optics and Photonics, San Francisco, California, 2013), 863016.

T. Baehr-Jones, “OpSIS-IME OI50 Process – Performance Summary,” http://opsisfoundry.org/wp-content/uploads/opsis_oi50_performance_summary_10_8_13.pdf .

J.-M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 6.

J. Fujikata, S. Takahashi, M. Takahashi, and T. Horikawa, “High speed and highly efficient Si optical modulator with MOS junction for 1.55 µm and 1.3 µm wavelengths,” in IEEE 10th International Conference on Group IV Photonics (IEEE, Seoul, S. Korea, 2013), pp. 65–66.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Micrograph of the device. (b) Simplified cross sectional diagram of the phase shifter, not to scale.

Fig. 2
Fig. 2

(a) Typical spectrum at various reverse biases. (b) Phase shift vs reverse bias of typical phase shifter. A small-signal Vπ is measured to be 8.8 and 8.1 V for the bottom and top arms, respectively, between 0 V and 1 V reverse bias. (c) C-V curve of the pn junction of the phase shifter. (d) Measured I-V curve of the device without RF termination.

Fig. 3
Fig. 3

(a) Simplified cross section of the thermal phase tuner. (b) Tuning efficiency of the thermal tuner. The power required to shift the wavelength by π is measured to be 27 mW.

Fig. 4
Fig. 4

(a) Electrooptic S21 of each arm at 0 V reverse bias. Input light is set to the −3 dB point in the optical spectrum. (b) S11 of the device.

Fig. 5
Fig. 5

50 Gbps eye diagrams using a differential pseudorandom 215-1 signal. (a) 1.5 Vpp amplitude and 0 V reverse bias. (b) 2.0 Vpp amplitude and 0 V reverse bias. (c) 3.0 Vpp amplitude and 1.0 V reverse bias. In all eye diagrams, input light is biased at the −3 dB optical point, 1301.91 nm.

Tables (1)

Tables Icon

Table 1 Comparison to Other Traveling-Wave Modulators in Silicon at 40 Gbps and Above

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α rf (f)= α rf,metal + α rf,Si 1 2 R TL (f) Z dev + 2 π 2 f 2 R pn C pn 2 Z dev 1+ (2π R pn C pn f) 2
ER=10lo g 10 ( P avg + P pp /2 P avg P pp /2 )
1bitloss= P bias +10lo g 10 ( P avg + P pp /2 P avg )
E n e r g y / b i t = N i n p u t B ( ( V p p / 2 ) 2 50 Ω + V b i a s 2 25 Ω )

Metrics