Abstract

We report here several different superlattice photonic crystal based designs for 200nm thick c-Si solar cells, demonstrating that these structures have the ability to increase broadband absorption from λ = 300nm to 1100nm by more than 100% compared to a planar cell with an optimized anti-reflection coating. We show that adding superlattices into photonic crystals introduces new optical modes that contribute to enhanced absorption. The greatest improvements are obtained when combining a superlattice photonic crystal with a randomly textured dielectric coating that improves incoupling into the modes of the absorbing region. Finally, we show that our design methodology is also applicable to layers 1 to 4 microns in thickness, where absorbed currents competitive with conventional thick Si solar cells may be achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
    [CrossRef] [PubMed]
  2. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  3. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  4. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
    [PubMed]
  5. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
    [CrossRef] [PubMed]
  6. J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  8. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
    [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
    [CrossRef] [PubMed]
  11. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  12. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  13. M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
    [CrossRef]
  14. C. X. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5), A1148–A1154 (2011).
    [CrossRef] [PubMed]
  15. C. X. Lin, N. F. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express20(S1), A125–A132 (2012).
    [CrossRef] [PubMed]
  16. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
    [PubMed]
  17. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
    [CrossRef]
  18. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
    [CrossRef]
  19. H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett.84(2), 161–163 (2004).
    [CrossRef]
  20. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  21. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
    [CrossRef]
  22. J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express20(6), 6816–6824 (2012).
    [CrossRef] [PubMed]
  23. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
    [CrossRef] [PubMed]

2013 (1)

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

2012 (7)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

C. X. Lin, N. F. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express20(S1), A125–A132 (2012).
[CrossRef] [PubMed]

J. Ma, L. J. Martínez, and M. L. Povinelli, “Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice,” Opt. Express20(6), 6816–6824 (2012).
[CrossRef] [PubMed]

2011 (3)

C. X. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5), A1148–A1154 (2011).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

2010 (5)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

2008 (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

2007 (1)

2006 (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
[CrossRef]

2004 (1)

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett.84(2), 161–163 (2004).
[CrossRef]

1999 (1)

1983 (1)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

1982 (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Aberle, A. G.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Alexander, D. T. L.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Altug, H.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
[CrossRef]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett.84(2), 161–163 (2004).
[CrossRef]

Atwater, H. A.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Ballif, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Bermel, P.

Blasi, B.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Bloch, A. N.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

Callahan, D. M.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chen, W.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Cui, Y.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Englund, D.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
[CrossRef]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Fan, S. H.

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Forberich, K.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Haug, F. J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Huang, N. F.

Joannopoulos, J. D.

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Kimerling, L. C.

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Lee, R. K.

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Lin, C. X.

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Luo, C.

Ma, J.

Martínez, L. J.

Munday, J. N.

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Peters, M.

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Povinelli, M. L.

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

Scherer, A.

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Sheng, P.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Stepleman, R. S.

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

Sun, C.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Vuckovic, J.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
[CrossRef]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett.84(2), 161–163 (2004).
[CrossRef]

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

Wang, C.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

Xu, Y.

Yablonovitch, E.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yariv, A.

Yu, S.

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Yu, Z. F.

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zeng, L.

Zhu, J.

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

ACS Nano (1)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett.43(6), 579–581 (1983).
[CrossRef]

H. Altug and J. Vuckovic, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett.84(2), 161–163 (2004).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar-cells,” IEEE Trans. Electron. Dev.29(2), 300–305 (1982).
[CrossRef]

Nano Lett. (5)

J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater.11(12), 1017–1022 (2012).
[PubMed]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U. S. A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U. S. A.107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Peters, K. Forberich, C. Battaglia, A. G. Aberle, and B. Blasi, “Comparison of periodic and random structures for scattering in thin-film microcrystalline silicon solar cells,” Proc. SPIE8438, 84380F (2012).
[CrossRef]

Sci. Rep. (1)

C. Wang, S. Yu, W. Chen, and C. Sun, “Highly efficient light-trapping structure design inspired by natural evolution,” Sci. Rep.3, 1025 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Conceptual diagram illustrating a range of possible light trapping structures incorporating different degrees of randomness and order.

Fig. 2
Fig. 2

Absorption spectrum of a planar Si layer with a two-layer AR coating of SiO2 and Si3N4, optimized for thickness, compared to that of a rectangular lattice photonic crystal (r = 116nm, a = 290nm) of the same thickness.

Fig. 3
Fig. 3

Four different superlattice geometries (top) and their spectral absorption as a function of superlattice air hole diameter (bottom). For reference, the vertical dotted white lines indicate when the superlattice air hole diameter is the same as the background lattice air hole diameter (i.e. no superlattice).

Fig. 4
Fig. 4

Absorbed current as a function of superlattice air hole diameter for four different configurations obtained by integrating the spectral absorption data in Fig. 3 and weighting by the AM 1.5 solar spectral current.

Fig. 5
Fig. 5

Field profiles (E-field polarized along y direction) for a wavelength of 678nm for (b) the original lattice and (c) the “center close-packed” superlattice. The field intensities are much higher for the superlattices, leading to increased absorption. The shape of the field profiles is also different in each case, suggesting the introduction of new optical modes through the addition of a superlattice.

Fig. 6
Fig. 6

Field profiles (E-field polarized along y direction) at a wavelength of 1010nm for (b) the original lattice and (c) the “edge-extended” superlattice. In this case, the localized field profiles suggest that the new modes of the superlattice act more like isolated resonators.

Fig. 7
Fig. 7

TE-TM averaged angular absorption spectra for (a) the original lattice, and (b) the “center close-packed” superlattice. (c) Absorption enhancement ratio obtained by dividing spectra (a) by spectra (b).

Fig. 8
Fig. 8

Integrated absorbed current for the “center close-packed” superlattice (solid line) and the original lattice (dashed line) as a function of incident angle, averaged over TE and TM modes and weighted by the AM 1.5 solar spectral current.

Fig. 9
Fig. 9

Maps of available modes as excited by sets of random dipoles in 2D lattice representations of a) base lattice with 290nm period, 232 nm diameter and b) base lattice with 0nm center close packed sublattice. There are clearly new modes introduces both above and below the air light line when the sublattice is added.

Fig. 10
Fig. 10

Fraction of light absorbed at normal incidence for (left) Suzuki lattice and (right) extended Suzuki lattice with a simple periodic lattice of a = 510nm and r = 155nm.

Fig. 11
Fig. 11

Absorbed current as a function of superlattice air hole diameter for two different superlattices in the hexagonal lattice obtained by integrating the data in Fig. 9 and weighting by the AM 1.5 solar spectral current.

Fig. 12
Fig. 12

TE-TM averaged angular absorption spectra for (a) the original hexagonal lattice, (b) the optimal superlattice, and (c) the enhancement ratio.

Fig. 13
Fig. 13

Schematic of a planar slab with roughened texturing (left) and the highest-performing structure (right), wherein a photonic crystal superlattice is integrated with a randomly textured dielectric incoupler.

Fig. 14
Fig. 14

Summary of the change in absorbed current with changes in the geometry and thickness of the absorbing layer compared to the ergodic light trapping limit.

Metrics