Abstract

Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Johnson and J. G. Eden, “Continua in the visible absorption spectrum of K2,” J. Opt. Soc. Am. B2(5), 721–728 (1985).
    [CrossRef]
  2. C. R. Vidal, “Vapor cells and heat-pipes,” Exp. Methods Phys. Sci.29B, 67–83 (1996).
  3. B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
    [CrossRef]
  4. Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992).
    [CrossRef]
  5. A. Gallagher, “Line shapes and radiation transfer,” in Springer Handbook of Atomic, Molecular and Optical Physics, G. W. F. Drake, ed. (Springer, 2006), pp. 279–293.
  6. S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
    [CrossRef]
  7. S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
    [CrossRef]
  8. D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
    [CrossRef]
  9. H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
    [CrossRef]
  10. D. Sarkisyan, B. D. Paul, S. T. Cundiff, E. A. Gibson, and A. Gallagher, “Conical emission by 2-ps excitation of potassium vapor,” J. Opt. Soc. Am. B18(2), 218–224 (2001).
    [CrossRef]
  11. W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review,” Prog. Quantum Electron.36(1), 4–28 (2012).
    [CrossRef]
  12. B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010).
    [CrossRef]
  13. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett.27(7), 500–502 (2002).
    [CrossRef] [PubMed]
  14. R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
    [CrossRef]
  15. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett.34(7), 1012–1014 (2009).
    [CrossRef] [PubMed]
  16. C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
    [CrossRef]
  17. G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
    [CrossRef]
  18. S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
    [CrossRef]
  19. R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).
  20. A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements, R. Gray, ed. (Elsevier, 1963).
  21. V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
    [CrossRef]
  22. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett.28(23), 2336–2338 (2003).
    [CrossRef] [PubMed]
  23. H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
    [CrossRef]
  24. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, 2006).
  25. L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
    [CrossRef]
  26. D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
    [CrossRef]
  27. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett.15(22), 1282–1284 (1990).
    [CrossRef] [PubMed]
  28. J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev.128(2), 681–693 (1962).
    [CrossRef]
  29. I. M. Savukov, “Quasicontinuum relativistic many-body perturbation theory photoionization cross sections of Na, K, Rb, and Cs,” Phys. Rev. A76(3), 032710 (2007).
    [CrossRef]
  30. K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
    [CrossRef]
  31. Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
    [CrossRef]
  32. V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007).
    [CrossRef]
  33. N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
    [CrossRef]
  34. H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
    [CrossRef]

2013 (2)

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

2012 (2)

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review,” Prog. Quantum Electron.36(1), 4–28 (2012).
[CrossRef]

2010 (2)

B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010).
[CrossRef]

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

2009 (1)

2008 (2)

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

2007 (2)

I. M. Savukov, “Quasicontinuum relativistic many-body perturbation theory photoionization cross sections of Na, K, Rb, and Cs,” Phys. Rev. A76(3), 032710 (2007).
[CrossRef]

V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007).
[CrossRef]

2006 (3)

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
[CrossRef]

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

2005 (1)

D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
[CrossRef]

2003 (1)

2002 (1)

2001 (2)

D. Sarkisyan, B. D. Paul, S. T. Cundiff, E. A. Gibson, and A. Gallagher, “Conical emission by 2-ps excitation of potassium vapor,” J. Opt. Soc. Am. B18(2), 218–224 (2001).
[CrossRef]

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

2000 (1)

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

1996 (2)

C. R. Vidal, “Vapor cells and heat-pipes,” Exp. Methods Phys. Sci.29B, 67–83 (1996).

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

1993 (1)

V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
[CrossRef]

1992 (1)

Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992).
[CrossRef]

1990 (1)

1986 (1)

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

1985 (1)

1984 (1)

L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
[CrossRef]

1983 (1)

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

1982 (1)

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

1962 (1)

J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev.128(2), 681–693 (1962).
[CrossRef]

Abad, M.

Afrousheh, K.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

Aumiler, D.

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
[CrossRef]

Ban, T.

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
[CrossRef]

Beach, R. J.

Beuc, R.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

Cerè, A.

Cooper, J. W.

J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev.128(2), 681–693 (1962).
[CrossRef]

Cundiff, S. T.

Düren, R.

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

Eden, J. G.

Efthimiopoulos, T.

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

Falke, S.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Forkey, J. N.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Friebe, J.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Gaižauskas, E.

V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007).
[CrossRef]

Gallagher, A.

Gibson, E. A.

Hasselbrink, E.

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

Horvatic, V.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
[CrossRef]

Hua, W.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Johnson, D. E.

Kanz, V. K.

Karaganov, V.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010).
[CrossRef]

Knöckel, H.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Kokaj, J.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

Krupke, W. F.

Labazan, I.

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

Li, X.

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

Lisdat, C.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Lu, Q.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Makdisi, Y.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

Marafi, M.

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

Mathew, J.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

Mellinger, A.

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

Merlemis, N.

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

Miles, R. B.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Milosevic, S.

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

Milošvic, S.

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

Mitchell, M. W.

Movre, M.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
[CrossRef]

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

Nair, R.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

Niemax, K.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

Österberg, U.

L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
[CrossRef]

Parigi, V.

Paul, B. D.

Payne, S. A.

Pendrill, L. R.

L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
[CrossRef]

Pentaris, D.

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

Pettersson, M.

L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
[CrossRef]

Pichler, G.

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
[CrossRef]

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

Predojevic, A.

Quentmeier, A.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

Riedmann, M.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Sarkisyan, D.

S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
[CrossRef]

D. Sarkisyan, B. D. Paul, S. T. Cundiff, E. A. Gibson, and A. Gallagher, “Conical emission by 2-ps excitation of potassium vapor,” J. Opt. Soc. Am. B18(2), 218–224 (2001).
[CrossRef]

Savukov, I. M.

I. M. Savukov, “Quasicontinuum relativistic many-body perturbation theory photoionization cross sections of Na, K, Rb, and Cs,” Phys. Rev. A76(3), 032710 (2007).
[CrossRef]

Scholten, R. E.

Shuker, R.

Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992).
[CrossRef]

Silberberg, Y.

Skenderovic, H.

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

Steffes, B.

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

Tamir, Y.

Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992).
[CrossRef]

Tang, Z.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Teubner, P. J. O.

Tiemann, E.

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

Turner, L. D.

Vadla, C.

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
[CrossRef]

Vaicaitis, V.

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007).
[CrossRef]

Vdovic, S.

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
[CrossRef]

Veza, D.

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

Vidal, C. R.

C. R. Vidal, “Vapor cells and heat-pipes,” Exp. Methods Phys. Sci.29B, 67–83 (1996).

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

Viza, D.

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

Vujicic, N.

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

Wang, H.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Wolfgramm, F.

Xu, X.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Yalin, A. P.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Yang, Z.

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Zaidi, S. H.

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010).
[CrossRef]

Appl. Phys. B (3)

B. Steffes, X. Li, A. Mellinger, and C. R. Vidal, “Heat-pipe oven for large column densities with a well-defined optical path length,” Appl. Phys. B62(1), 87–90 (1996).
[CrossRef]

D. Pentaris, T. Efthimiopoulos, N. Merlemis, and V. Vaičaitis, “Axial and conical parametric emissions from potassium atoms under two-photon fs excitation,” Appl. Phys. B98(2–3), 383–390 (2010).
[CrossRef]

N. Vujičić, H. Skenderović, T. Ban, D. Aumiler, and G. Pichler, “Low-density plasma channels generated by femtosecond pulses,” Appl. Phys. B82(3), 377–382 (2006).
[CrossRef]

Cent. Eur. J. Phys. (1)

B. V. Zhdanov and R. J. Knize, “Alkali lasers for magnetic resonance imaging,” Cent. Eur. J. Phys.8(2), 184–193 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

S. Milošvić, G. Pichler, R. Düren, and E. Hasselbrink, “Fluorescence studies of the K2 diffuse band at 572.5 nm,” Chem. Phys. Lett.128(2), 145–149 (1986).
[CrossRef]

Eur. Phys. J. D (1)

C. Vadla, R. Beuc, V. Horvatic, M. Movre, A. Quentmeier, and K. Niemax, “Comparison of theoretical and experimental red and near infrared absorption spectra in overheated potassium vapour,” Eur. Phys. J. D37(1), 37–49 (2006).
[CrossRef]

Exp. Methods Phys. Sci. (1)

C. R. Vidal, “Vapor cells and heat-pipes,” Exp. Methods Phys. Sci.29B, 67–83 (1996).

Fizika (1)

R. Beuc, S. Milosevic, M. Movre, G. Pichler, and D. Veza, “Satellite bands in the far blue wing of the potassium first resonance doublet,” Fizika14, 345–349 (1982).

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

G. Pichler, S. Milosevic, D. Viza, and R. Beuc, “Diffuse bands in the visible absorption spectra of dense alkali vapours,” J. Phys. B16(24), 4619–4631 (1983).
[CrossRef]

Meas. Sci. Technol. (1)

R. B. Miles, A. P. Yalin, Z. Tang, S. H. Zaidi, and J. N. Forkey, “Flow field imaging through sharp-edged atomic and molecular ‘notch’ filters,” Meas. Sci. Technol.12(4), 442–451 (2001).
[CrossRef]

Opt. Commun. (3)

S. Vdović, D. Sarkisyan, and G. Pichler, “Absorption spectrum of rubidium and cesium dimers by compact computer operated spectrometer,” Opt. Commun.268(1), 58–63 (2006).
[CrossRef]

H. Wang, Z. Yang, W. Hua, X. Xu, and Q. Lu, “Choice of alkali element for DPAL scaling, a numerical study,” Opt. Commun.296, 101–105 (2013).
[CrossRef]

Y. Makdisi, J. Kokaj, K. Afrousheh, J. Mathew, R. Nair, and G. Pichler, “Multiphoton laser ionization for energy conversion in barium vapor,” Opt. Commun.290, 95–99 (2013).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. (1)

J. W. Cooper, “Photoionization from outer atomic subshells. A model study,” Phys. Rev.128(2), 681–693 (1962).
[CrossRef]

Phys. Rev. A (7)

I. M. Savukov, “Quasicontinuum relativistic many-body perturbation theory photoionization cross sections of Na, K, Rb, and Cs,” Phys. Rev. A76(3), 032710 (2007).
[CrossRef]

K. Afrousheh, M. Marafi, J. Kokaj, Y. Makdisi, and J. Mathew, “Spectroscopic studies of 5d3/2nd 1D0,2 autoionization lines of barium under collision with rare gases,” Phys. Rev. A85(5), 052517 (2012).
[CrossRef]

V. Vaičaitis and E. Gaižauskas, “Conical fluorescence emission from sodium vapor excited with tunable femtosecond light pulses,” Phys. Rev. A75(3), 033808 (2007).
[CrossRef]

H. Skenderović, I. Labazan, S. Milosević, and G. Pichler, “Laser-ignited glow discharge in lithium vapor,” Phys. Rev. A62(5), 052707 (2000).
[CrossRef]

S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Phys. Rev. A78(1), 012503 (2008).
[CrossRef]

D. Aumiler, T. Ban, and G. Pichler, “Femtosecond laser-induced cone emission in dense cesium vapor,” Phys. Rev. A71(6), 063803 (2005).
[CrossRef]

H. Skenderović, T. Ban, N. Vujičić, D. Aumiler, S. Vdović, and G. Pichler, “Cone emission induced by femtosecond excitation in rubidium vapor,” Phys. Rev. A77(6), 063816 (2008).
[CrossRef]

Phys. Scr. (1)

L. R. Pendrill, M. Pettersson, and U. Österberg, “Spectral variation of collisional ionization of excited potassium atoms,” Phys. Scr.29(4), 313–316 (1984).
[CrossRef]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)—A review,” Prog. Quantum Electron.36(1), 4–28 (2012).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Tamir and R. Shuker, “Novel design of hot windows in saturated metal vapor absorption experiments,” Rev. Sci. Instrum.63(2), 1834–1837 (1992).
[CrossRef]

Z. Phys. D (1)

V. Horvatic, C. Vadla, and M. Movre, “The collisional cross sections for excitation energy transfer in Rb*(5P3/2)+K(4S1/2)→Rb(5S1/2)+K*(4PJ) processes,” Z. Phys. D27(2), 123–130 (1993).
[CrossRef]

Other (3)

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier, 2006).

A. N. Nesmeyanov, Vapor Pressure of the Chemical Elements, R. Gray, ed. (Elsevier, 1963).

A. Gallagher, “Line shapes and radiation transfer,” in Springer Handbook of Atomic, Molecular and Optical Physics, G. W. F. Drake, ed. (Springer, 2006), pp. 279–293.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption coefficient profiles from 350 nm to 1000 nm at different temperature and/or the densities of potassium vapor.

Fig. 2
Fig. 2

Experimental setup with oven and the sapphire cell containing dense potassium vapor. Laser induced fluorescence was observed side-on by means of the digital spectrometer. NDF is the appropriate combination of the neutral density filters.

Fig. 3
Fig. 3

Profiles of the incoming femtosecond laser light before the dense potassium vapor in the sapphire cell (750 nm gray, 760 nm green, 770 nm pink, 780 nm blue, 785 nm red, 800 nm black, 830 nm purple).

Fig. 4
Fig. 4

Side-on observed laser fluorescence induced by the femtosecond laser peaking at 750 (gray), 760 (blue), 780 (green), 785(orange) and 800 nm (pink) through potassium vapor column at 380 °C.

Fig. 5
Fig. 5

Transmission of the femtosecond laser peaking at 770 nm, (a) The absorption of the first potassium doublet lines at 766 nm and 770 nm observed at 560 °C ( N = 8.4 × 10 17 c m 3 ). At higher temperatures the absorption of the rubidium impurity resonance line at 780 nm is observed at (b) 675 °C ( N = 3.5 × 10 18 c m 3 ) and (c) 700 °C ( N = 4.5 × 10 18 c m 3 ). In (d) we show the spectral profile of the incoming fs laser beam. The self-phase modulation causes the laser pulse spectral broadening outside the 760-780 nm interval.

Fig. 6
Fig. 6

Femtosecond laser induced fluorescence spectrum of potassium vapor at 475 °C (femtosecond laser had a power of 50 mW peaking at 406 nm). Potassium dimer band had a maximum at 422 nm.

Fig. 7
Fig. 7

Transmission spectrum of the femtosecond laser at 404 nm (dotted line). The absorption of the second potassium doublet at about 404 nm could be observed together with potassium dimer band in emission with a peak at 415 nm, for two temperatures at 640 °C (N = 2.3×1018 cm−3, red line) and 670 °C ( N = 3.2 × 10 18 c m 3 , blue line).

Tables (1)

Tables Icon

Table 1 Femtosecond Laser Induced Conical Emission in Dense Alkali Vapors

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l o g   p ( T o r r ) = 7183 4430 T ( K )
N ( c m 3 ) = 9.66 × 10 18   p ( T o r r ) T ( K )

Metrics