Abstract

A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
    [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  3. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett.29(22), 2611–2613 (2004).
    [CrossRef] [PubMed]
  4. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
    [CrossRef] [PubMed]
  5. J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
    [CrossRef] [PubMed]
  6. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
    [CrossRef]
  7. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
    [CrossRef]
  8. M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
    [CrossRef]
  9. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
    [CrossRef]
  10. https://sites.google.com/site/opticaltrappingpark/home/statistics
  11. F. Belloni, S. Monneret, F. Monduc, and M. Scordia, “Multiple holographic optical tweezers parallel calibration with optical potential well characterization,” Opt. Express16(12), 9011–9020 (2008).
    [CrossRef] [PubMed]
  12. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express16(25), 20987–21003 (2008).
    [CrossRef] [PubMed]
  13. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J Biophotonics3(4), 224–233 (2010).
    [CrossRef] [PubMed]
  14. A. Farré, M. Shayegan, C. López-Quesada, G. A. Blab, M. Montes-Usategui, N. R. Forde, and E. Martín-Badosa, “Positional stability of holographic optical traps,” Opt. Express19(22), 21370–21384 (2011).
    [CrossRef] [PubMed]
  15. C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express13(21), 8678–8685 (2005).
    [CrossRef] [PubMed]
  16. M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express18(11), 11250–11263 (2010).
    [CrossRef] [PubMed]
  17. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express21(2), 1779–1797 (2013).
    [CrossRef] [PubMed]
  18. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
    [CrossRef] [PubMed]
  19. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999).
    [CrossRef] [PubMed]
  20. M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14(6), 2101–2107 (2006).
    [CrossRef] [PubMed]
  21. S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181(8), 1444–1448 (2010).
    [CrossRef]
  22. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  23. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998).
    [CrossRef] [PubMed]
  24. http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-manual/
  25. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express18(8), 7670–7677 (2010).
    [CrossRef] [PubMed]
  26. P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
    [CrossRef] [PubMed]
  27. M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
    [CrossRef] [PubMed]
  28. R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
    [CrossRef] [PubMed]
  29. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCOS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express20(16), 17843–17855 (2012).
    [CrossRef] [PubMed]
  30. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012).
    [CrossRef] [PubMed]
  31. A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express18(11), 11955–11968 (2010).
    [CrossRef] [PubMed]
  32. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
    [CrossRef] [PubMed]
  33. P. Mangeol and U. Bockelmann, “Interference and crosstalk in double optical tweezers using a single laser source,” Rev. Sci. Instrum.79(8), 083103 (2008).
    [CrossRef] [PubMed]
  34. C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor,” Appl. Opt.48(6), 1084–1090 (2009).
    [CrossRef] [PubMed]
  35. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
    [CrossRef]
  36. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
    [CrossRef]
  37. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
    [CrossRef] [PubMed]
  38. E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
    [CrossRef]
  39. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
    [CrossRef] [PubMed]
  40. J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
    [CrossRef] [PubMed]
  41. T. Odijk, “Stiff Chains and Filaments under Tension,” Macromolecules28(20), 7016–7018 (1995).
    [CrossRef]
  42. J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
    [CrossRef] [PubMed]
  43. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express15(26), 18268–18274 (2007).
    [CrossRef] [PubMed]
  44. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
    [CrossRef] [PubMed]
  45. F. Czerwinski, “allan v1.71,” MatlabCentral 21727 (2008), http://www.mathworks.com/matlabcentral/fileexchange/21727
  46. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
    [CrossRef]
  47. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16(20), 15897–15902 (2008).
    [CrossRef] [PubMed]
  48. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express20(1), 364–376 (2012).
    [CrossRef] [PubMed]
  49. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20(13), 14015–14029 (2012).
    [CrossRef] [PubMed]
  50. A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra, “Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers,” Opt. Express21(1), 102–111 (2013).
    [CrossRef] [PubMed]

2013 (2)

2012 (4)

2011 (2)

A. Farré, M. Shayegan, C. López-Quesada, G. A. Blab, M. Montes-Usategui, N. R. Forde, and E. Martín-Badosa, “Positional stability of holographic optical traps,” Opt. Express19(22), 21370–21384 (2011).
[CrossRef] [PubMed]

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (2)

C. López-Quesada, J. Andilla, and E. Martín-Badosa, “Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor,” Appl. Opt.48(6), 1084–1090 (2009).
[CrossRef] [PubMed]

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

2008 (6)

2007 (4)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
[CrossRef]

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express15(26), 18268–18274 (2007).
[CrossRef] [PubMed]

2006 (4)

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
[CrossRef] [PubMed]

J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

2005 (3)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express13(21), 8678–8685 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

1999 (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999).
[CrossRef] [PubMed]

1998 (3)

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

1997 (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

1996 (2)

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Odijk, “Stiff Chains and Filaments under Tension,” Macromolecules28(20), 7016–7018 (1995).
[CrossRef]

1991 (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Andilla, J.

Arias, A.

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

Backsten, J.

Belloni, F.

Bengtsson, J.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

Bianchi, S.

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181(8), 1444–1448 (2010).
[CrossRef]

Bizebard, T.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

Blab, G. A.

A. Farré, M. Shayegan, C. López-Quesada, G. A. Blab, M. Montes-Usategui, N. R. Forde, and E. Martín-Badosa, “Positional stability of holographic optical traps,” Opt. Express19(22), 21370–21384 (2011).
[CrossRef] [PubMed]

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J Biophotonics3(4), 224–233 (2010).
[CrossRef] [PubMed]

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Bockelmann, U.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

P. Mangeol and U. Bockelmann, “Interference and crosstalk in double optical tweezers using a single laser source,” Rev. Sci. Instrum.79(8), 083103 (2008).
[CrossRef] [PubMed]

Botvinick, E.

Bowman, R.

Bowman, R. W.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
[CrossRef] [PubMed]

Capitanio, M.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
[CrossRef]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

Chiaruttini, C.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

Cicchi, R.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
[CrossRef]

Cottrell, D. M.

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
[CrossRef] [PubMed]

Curtis, J. E.

Dainty, C.

Dame, R. T.

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
[CrossRef] [PubMed]

Davis, J. A.

de Sars, V.

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181(8), 1444–1448 (2010).
[CrossRef]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

Downing, B. P. B.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J Biophotonics3(4), 224–233 (2010).
[CrossRef] [PubMed]

Dreyfus, M.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

Dufresne, E. R.

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

Emiliani, V.

Engström, D.

Eriksson, E.

Etcheverry, S.

Falkenberg, M.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Farge, G.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Farré, A.

Florin, E.-L.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

Forde, N. R.

Frank, A.

Fuller, D. N.

J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
[CrossRef] [PubMed]

Gallardo, M. J.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Gibson, G. M.

Gittes, F.

Goksör, M.

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

Gross, P.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Gross, S. P.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Guillon, M.

Haist, T.

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Hernandez, T. M.

Hooijman, P.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Hörber, J. K. H.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

Ianni, F.

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Izhaky, D.

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

Keen, S.

Kenny, F.

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Koshioka, M.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Lara, D.

Leach, J.

López-Quesada, C.

Love, G. D.

Mangeol, P.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

P. Mangeol and U. Bockelmann, “Interference and crosstalk in double optical tweezers using a single laser source,” Rev. Sci. Instrum.79(8), 083103 (2008).
[CrossRef] [PubMed]

Marsà, F.

Martín-Badosa, E.

Masuhara, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Modesti, M.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

Monduc, F.

Monneret, S.

Montes-Usategui, M.

Moreno, I.

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Noom, M. C.

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
[CrossRef] [PubMed]

Nugent-Glandorf, L.

Odijk, T.

T. Odijk, “Stiff Chains and Filaments under Tension,” Macromolecules28(20), 7016–7018 (1995).
[CrossRef]

Padgett, M.

Padgett, M. J.

Pavone, F. S.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
[CrossRef]

Perkins, T. T.

Persson, M.

Peterman, E. J. G.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

Pleguezuelos, E.

Pralle, A.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

Preece, D.

Reicherter, M.

Rickgauer, J. P.

J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
[CrossRef] [PubMed]

Ritsch-Marte, M.

Rodríguez-Herrera, O. G.

Rohrbach, A.

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Ronzitti, E.

Rubinsztein-Dunlop, H.

Ruocco, G.

Saavedra, C.

Sand, D.

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Schmidt, C. F.

Schmitz, C. H. J.

Scordia, M.

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

Shayegan, M.

Smith, D. E.

J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
[CrossRef] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
[CrossRef] [PubMed]

Solano, P.

Spatz, J. P.

Springer, M.

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

Staforelli, J. P.

Stelzer, E. H. K.

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

Thalhammer, G.

Tiziani, H. J.

van den Broek, B.

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

van der Horst, A.

van Mameren, J.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

Visscher, K.

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

Wagemann, E. U.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Wright, A. J.

Wuite, G. J. L.

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
[CrossRef] [PubMed]

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem.77(1), 205–228 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process.66(7), S75–S78 (1998).
[CrossRef]

Biophys. J. (2)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J.72(3), 1335–1346 (1997).
[CrossRef] [PubMed]

J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J.91(11), 4253–4257 (2006).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun.181(8), 1444–1448 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996).
[CrossRef]

J Biophotonics (1)

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J Biophotonics3(4), 224–233 (2010).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys.30(Part 2, No. 5B), L907–L909 (1991).
[CrossRef]

Macromolecules (1)

T. Odijk, “Stiff Chains and Filaments under Tension,” Macromolecules28(20), 7016–7018 (1995).
[CrossRef]

Nat. Methods (1)

M. C. Noom, B. van den Broek, J. van Mameren, and G. J. L. Wuite, “Visualizing single DNA-bound proteins using DNA as a scanning probe,” Nat. Methods4(12), 1031–1036 (2007).
[CrossRef] [PubMed]

Nature (3)

R. T. Dame, M. C. Noom, and G. J. L. Wuite, “Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation,” Nature444(7117), 387–390 (2006).
[CrossRef] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature438(7067), 460–465 (2005).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express (18)

C. H. J. Schmitz, J. P. Spatz, and J. E. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express13(21), 8678–8685 (2005).
[CrossRef] [PubMed]

M. Montes-Usategui, E. Pleguezuelos, J. Andilla, and E. Martín-Badosa, “Fast generation of holographic optical tweezers by random mask encoding of Fourier components,” Opt. Express14(6), 2101–2107 (2006).
[CrossRef] [PubMed]

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15(4), 1913–1922 (2007).
[CrossRef] [PubMed]

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express15(26), 18268–18274 (2007).
[CrossRef] [PubMed]

F. Belloni, S. Monneret, F. Monduc, and M. Scordia, “Multiple holographic optical tweezers parallel calibration with optical potential well characterization,” Opt. Express16(12), 9011–9020 (2008).
[CrossRef] [PubMed]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16(20), 15897–15902 (2008).
[CrossRef] [PubMed]

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express16(25), 20987–21003 (2008).
[CrossRef] [PubMed]

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express18(8), 7670–7677 (2010).
[CrossRef] [PubMed]

M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express18(11), 11250–11263 (2010).
[CrossRef] [PubMed]

A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express18(11), 11955–11968 (2010).
[CrossRef] [PubMed]

A. Farré, M. Shayegan, C. López-Quesada, G. A. Blab, M. Montes-Usategui, N. R. Forde, and E. Martín-Badosa, “Positional stability of holographic optical traps,” Opt. Express19(22), 21370–21384 (2011).
[CrossRef] [PubMed]

I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express20(1), 364–376 (2012).
[CrossRef] [PubMed]

A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express20(11), 12270–12291 (2012).
[CrossRef] [PubMed]

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20(13), 14015–14029 (2012).
[CrossRef] [PubMed]

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCOS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express20(16), 17843–17855 (2012).
[CrossRef] [PubMed]

A. Arias, S. Etcheverry, P. Solano, J. P. Staforelli, M. J. Gallardo, H. Rubinsztein-Dunlop, and C. Saavedra, “Simultaneous rotation, orientation and displacement control of birefringent microparticles in holographic optical tweezers,” Opt. Express21(1), 102–111 (2013).
[CrossRef] [PubMed]

G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express21(2), 1779–1797 (2013).
[CrossRef] [PubMed]

Opt. Lasers Eng. (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng.45(4), 450–457 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev.6(1), 24–27 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970).
[CrossRef]

A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett.95(16), 168102 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE54(2), 221–230 (1966).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (3)

P. Mangeol, T. Bizebard, C. Chiaruttini, M. Dreyfus, M. Springer, and U. Bockelmann, “Probing ribosomal protein-RNA interactions with an external force,” Proc. Natl. Acad. Sci. U.S.A.108(45), 18272–18276 (2011).
[CrossRef] [PubMed]

J. van Mameren, P. Gross, G. Farge, P. Hooijman, M. Modesti, M. Falkenberg, G. J. L. Wuite, and E. J. G. Peterman, “Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.106(43), 18231–18236 (2009).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, D. Izhaky, and C. Bustamante, “Differential detection of dual traps improves the spatial resolution of optical tweezers,” Proc. Natl. Acad. Sci. U.S.A.103(24), 9006–9011 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594–612 (2004).
[CrossRef]

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998).
[CrossRef]

P. Mangeol and U. Bockelmann, “Interference and crosstalk in double optical tweezers using a single laser source,” Rev. Sci. Instrum.79(8), 083103 (2008).
[CrossRef] [PubMed]

Science (1)

S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science271(5250), 795–799 (1996).
[CrossRef] [PubMed]

Other (3)

F. Czerwinski, “allan v1.71,” MatlabCentral 21727 (2008), http://www.mathworks.com/matlabcentral/fileexchange/21727

http://cismm.cs.unc.edu/resources/software-manuals/video-spot-tracker-manual/

https://sites.google.com/site/opticaltrappingpark/home/statistics

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical layout of our instrument. Alternatively (see Section 3.4), the setup could be reconfigured for comparison purposes, using additional optics (right-hand side) to split the beam by polarization. As a result, two traps with orthogonal polarizations were generated without resorting to the SLM.

Fig. 2
Fig. 2

(a) In the LC display, the molecules change their orientation when a voltage is applied to them. (b) For our SLM, the LC molecules tilt in a plane parallel to the optical table, which determines the direction of the extraordinary refractive index. The ordinary axis is perpendicular to it. When a linearly polarized beam oscillating with a certain angle, α, impinges on the LC, the phase of the component parallel to the table is controlled by the orientation of the molecules, since the effective refractive index of the material nE (V) depends on the voltage V through the tilt (this is the normal mode of operation). In contrast, any perpendicular component always sees the same refractive index, nO, which is independent of the applied voltage. In consequence, after the SLM, the laser is split into two different beams: a pure holographic (modulated) and a pure non-holographic (unmodulated) beam.

Fig. 3
Fig. 3

Intensity patterns recorded at the BFP of the condenser with a conventional CCD camera. The bead is in the non-holographic trap (OT) and the holographic trap (HOT) is empty. Each column corresponds to a different angle of the analyzer: (a) parallel to the non-holographic beam, (b) parallel to the holographic (empty) beam and (c) at 45°. Hollow arrows indicate the polarization of the traps and the solid arrow the orientation of the analyzer.

Fig. 4
Fig. 4

Analysis of the crosstalk between traps. (a) BFPI signal when the analyzer is set to record the non-holographic light that we use for position detection, and the bead is first moved across this non-holographic (OT) trap (black curve) and then across the holographic (HOT) one (red curve). The level of crosstalk is proportional to the number of traps (inset). (b) The BFP pattern of an empty trap when the analyzer selects the complementary polarization is an almost constant dark disk with NA = 1.2, which corresponds to the NA of the trapping objective (the acceptance angle of the condenser extends further to NA = 1.4). The pattern shows the effect of depolarization, mainly at large angles, close to the edges. If the effective NA of the condenser is reduced from 1.4 to 0.7-0.8 using an iris (dotted circle), the crosstalk decreases drastically as the amount of depolarized light within this region is insignificant. This improves the position signal and was the configuration used for the experiment.

Fig. 5
Fig. 5

(a) Volume of the positions visited by a 1.87-μm microsphere trapped in the non-holographic trap, during calibration. (b) The confining potential is reconstructed from the probability distribution of positions, U = -kBTln(p) [35]. The fluctuations of the particle are compatible with a harmonic potential within a range of at least 50 nm, the range of thermally-driven displacements during calibration. (c) Power spectrum data of the Brownian motion and fitting. The roll-off frequency takes the values fc = 477 Hz and fc = 602 Hz in x and y, respectively. (d) Power spectra of the non-holographic component, in the presence of an empty (red) or filled (black) holographic trap. If the bead in the non-holographic trap is released, the power spectrum of the laser alone is obtained (blue). The same behavior was observed when the holographic polarization was chosen instead.

Fig. 6
Fig. 6

(a) DNA stretching curve. The data fitted Odijk’s formula for low forces (< 20 pN). From the fitting, we obtained Lc = 4.02 µm, Lp = 41 nm and K = 690 pN. (b) Correlation between the spikes at high forces and the intensity drops due to the “dead time” during the update of the hologram.

Fig. 7
Fig. 7

(a) Positions of beads 1 (black curve) and 2 (red curve) extracted from a 75-s movie. Light and dark colors correspond to raw and filtered data, respectively. (b) Distance between the particles shown in (a) with our holographic design and (c) with two independent traps obtained by the division of a single laser. (d) Allan variance of the three signals of the HOT setup.

Metrics