Abstract

We report in this paper a high thermal sensitivity (78 pm/°C) modal interferometer using a very short Photonic Crystal Fiber stub with a shaped Germanium doped core. The Photonic Crystal Fiber is spliced between two standard fibers. The splice regions allow the excitation of the core and cladding modes in the PCF and perform an interferometric interaction of such modes. The device is proposed for sensitive temperature measurements in transmission, as well as in reflection operation mode with the same high temperature sensitivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
    [CrossRef]
  2. B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
    [CrossRef]
  3. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  4. O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
    [CrossRef]
  5. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
    [CrossRef]
  6. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
    [CrossRef]
  7. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  8. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
    [CrossRef]
  9. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  11. M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
    [CrossRef]
  12. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009).
    [CrossRef] [PubMed]
  13. S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011).
    [CrossRef]
  14. C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).
  15. Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
    [CrossRef]
  16. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
    [CrossRef]
  17. B. Dong, D. P. Zhou, L. Wei, W. K. Liu, and J. W. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express16(23), 19291–19296 (2008).
    [CrossRef] [PubMed]
  18. www.comsol.com
  19. J. M. Pottage, D. M. Bird, T. D. Hedley, J. Knight, T. Birks, P. St. J. Russell, and P. Roberts, “Robust photonic band gaps for hollow core guidance in PCF made from high index glass,” Opt. Express11(22), 2854–2861 (2003).
    [CrossRef] [PubMed]
  20. J. C. Flanagan, R. Amezcua, F. Poletti, J. R. Hayes, N. G. R. Broderick, and D. J. Richardson, “The effect of periodicity on the defect modes of large mode area microstructured fibers,” Opt. Express16(23), 18631–18645 (2008).
    [CrossRef] [PubMed]
  21. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999).
    [CrossRef] [PubMed]
  22. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
    [CrossRef]
  23. F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).
  24. Y.-J. Kim, U. C. Paek, and B. H. Lee, “Measurement of refractive-index variation with temperature by use of long-period fiber gratings,” Opt. Lett.27(15), 1297–1299 (2002).
    [CrossRef] [PubMed]
  25. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
    [CrossRef] [PubMed]

2012 (3)

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

2011 (2)

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011).
[CrossRef]

Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference,” Appl. Opt.50(4), 468–472 (2011).
[CrossRef] [PubMed]

2009 (6)

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009).
[CrossRef] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

2008 (5)

2007 (3)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

2006 (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

2003 (1)

2002 (1)

2000 (1)

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

1999 (1)

Amezcua, R.

Arregui, F. J.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Baik, S.-J.

M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
[CrossRef]

Baptista, J. M.

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
[CrossRef]

Bartelt, H.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Bird, D. M.

Birks, T.

Bock, W. J.

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

Bozolan, A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

Bravo, J.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Broderick, N. G. R.

Burdge, G. L.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

Chan, C. C.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Chen, J.

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

Choi, E. S.

Choi, H. Y.

Chung, Y.

Coviello, G.

Cui, Y.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

de Matos, C. J. S.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

Deng, Y.

Dinh, X.-Q.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

Dong, B.

Dong, X.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Eftimov, T. A.

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

Eggleton, B. J.

Finazzi, V.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Flanagan, J. C.

Frazao, O. B.

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
[CrossRef]

Geng, Y.

Gerosa, R. M.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

Goicoechea, J.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Hayes, J. R.

Hedley, T. D.

Hernánez, M.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Hu, D. J. J.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

Hu, L.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Humbert, G.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

Hwang, D.

Im, K.

M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
[CrossRef]

Jesus, C.

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

Just, F.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Kerbage, C.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

Kim, M. J.

M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

Kim, Y.-J.

Kirchhof, J.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Knight, J.

Kuhlmey, B. T.

Larrión, B.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Lee, B. H.

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

Li, T.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Li, X.

Lit, J. W.

Liu, W. K.

Matías, I. R.

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Mikulic, P.

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Moon, D. S.

Moon, S.

Müller, H.-R.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Nalawade, S. M.

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011).
[CrossRef]

Nguyen, L. V.

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

Paek, U. C.

Park, K. S.

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett.33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
[CrossRef]

Park, S. J.

Poletti, F.

Pottage, J. M.

Pruneri, V.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Reichel, V.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Richardson, D. J.

Roberts, P.

Romero, M. A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

Roy, P.

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

Russell, P. St. J.

Santos, J. L.

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
[CrossRef]

Shum, P. P.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

Spälter, S.

Strasser, T. A.

Tan, X.

Thakur, H. V.

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011).
[CrossRef]

Unger, S.

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

Villatoro, J.

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000◦C,” Opt. Express17(24), 21551–21559 (2009).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Wang, G.

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

Wei, L.

Westbrook, P. S.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999).
[CrossRef] [PubMed]

White, C. A.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

Windeler, R. S.

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers,” Opt. Lett.24(21), 1460–1462 (1999).
[CrossRef] [PubMed]

Wong, W. C.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Wu, D. K. C.

Yu, Y.

Zhao, C. L.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Zhou, D. P.

Zu, P.

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

O. B. Frazao, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent Fiber,” IEEE Photon. Technol. Lett.21(17), 1277–1279 (2009).
[CrossRef]

S. M. Nalawade and H. V. Thakur, “Photonic crystal fiber strain-independent temperature sensing based on modal interferometer,” IEEE Photon. Technol. Lett.23(21), 1600–1602 (2011).
[CrossRef]

IEEE Photonics Journal (1)

Y. Cui, P. P. Shum, D. J. J. Hu, G. Wang, G. Humbert, and X.-Q. Dinh, “Temperature sensor by using selectively filled photonic crystal fiber Sagnac interferometer,” IEEE Photonics Journal4(5), 1801–1808 (2012).
[CrossRef]

J. Lightw. Techn. (2)

B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fibers,” J. Lightw. Techn.18(8), 1084–1100 (2000).
[CrossRef]

F. Just, H.-R. Müller, S. Unger, J. Kirchhof, V. Reichel, and H. Bartelt, “Ytterbium-doping related stresses in preforms for high-power fiber lasers,” J. Lightw. Techn.27(12), 2111–2116 (2009).

J. of Lightw. Tech. (1)

W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal Interferometer using a photonic crystal fiber,” J. of Lightw. Tech.27(17), 3933–3939 (2009).
[CrossRef]

J. Sens. (1)

B. Larrión, M. Hernánez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sens.2009, 932471 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol.17(5), 1129–1133 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Proc. SPIE (1)

M. J. Kim, K. S. Park, H. Y. Choi, S.-J. Baik, K. Im, and B. H. Lee, “High temperature sensor based on a photonic crystal fiber interferometer,” Proc. SPIE7004, 700407 (2008).
[CrossRef]

Sens. Journal (3)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, and M. A. Romero, “Temperature sensing using colloidal-core photonic crystal fiber,” Sens. Journal12(1), 195–200 (2012).
[CrossRef]

O. B. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi Photonic Crystal Fiber Loop Mirror,” Sens. Journal7(10), 1453–1455 (2007).
[CrossRef]

C. L. Zhao, C. C. Chan, L. Hu, T. Li, W. C. Wong, P. Zu, and X. Dong, “Temperature sensing based on ethanol-filled photonic crystal fiber modal interferometer,” Sens. Journal12(8), 2593–2597 (2012).

Other (1)

www.comsol.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup. a) sensor head. b) PCF cross section. c) collapsed region. d) microscopic image of the sensor head.

Fig. 2
Fig. 2

DOS plot of the unit cell of the PCF cladding at the operating wavelength of 1550 nm. For comparison, the fundamental core mode (FM) and higher order defect mode (HOM) of the full fiber have been plotted.

Fig. 3
Fig. 3

a) Fundamental core mode and b) the higher-order leaky mode which is localized in a local minimum of the DOS.

Fig. 4
Fig. 4

a) Measured refractive index and calculated GeO2 concentration profile of the core rod which was used for the PCF fabrication. b) Measured axial stress distribution of the core rod (blue) and expected stress profile of the drawn PCF (red).

Fig. 5
Fig. 5

a) SEM image of the PCF fiber. b) Estimated refractive index profile of the Ge-doped fiber core

Fig. 6
Fig. 6

Transmission spectrum signal. The black line is measured before the thermal cycle. The green line is measured after the thermal cycle.

Fig. 7
Fig. 7

The temperature characteristics of the fiber sensor head. Green dots represent the measurements under heating conditions and red triangles represent the measurements under cooling conditions. The left graph shows results from transmission measurements and the right graph shows results from reflection measurements.

Fig. 8
Fig. 8

Experimental setup in reflection. ASE is the broadband light source, OSA is Optical Spectrum Analyzer, FOC is Fiber Optic Circulator, a) head sensor, b) microscopic image of the gold film in the end fiber.

Tables (1)

Tables Icon

Table 1 PCF properties

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ z dA =0.
Δ n stress (r) 0.034 mol% c(r)( 1 ΔT 1000°C ).
n(r,T)= n 0 ( T 0 )+( 1.06 10 5 °C + 1.07 10 7 °Cmol% c(r) )ΔT+ 3.4 10 7 °Cmol% c(r)ΔT.
c(r)={ c 2 ( c 2 c 1 ) ( | r | R 1 ) 3 ,| r |< R 1 c 1 ( 1 | r | R 1 R 2 R 1 ), R 1 <| r |< R 2 0,| r |> R 2 .
I= I 1 + I 2 +2 I 1 I 2 cos(θ),
θ=( β 1 β 2 )L= 2π λ Δn (λ,T) eff L(T).
L(T)=L( T 0 )(1+αΔT),
Δ n eff = 1 L λ 2 λ 1 λ 2 λ 1 .
δ λ 1 =2L λ 2 λ 1 λ 2 + λ 1 δΔ n eff δT ΔT.

Metrics