Abstract

Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett. 36, 864–866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  2. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett.36(6), 864–866 (2011).
    [CrossRef] [PubMed]
  3. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35(16), 2804–2806 (2010).
    [CrossRef] [PubMed]
  4. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
    [CrossRef] [PubMed]
  5. M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004).
    [CrossRef] [PubMed]
  6. S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domain in quasi-phase-matched wavelength converters,” J. Appl. Phys.81(1), 369–375 (1997).
    [CrossRef]
  7. Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
    [CrossRef]
  8. V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B78(3–4), 363–366 (2004).
    [CrossRef]
  9. G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
    [CrossRef]
  10. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
    [CrossRef] [PubMed]
  11. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).
  12. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B30(4), 982–993 (2013).
    [CrossRef]
  13. Manuscript in preparation by the authors.

2013 (1)

2011 (1)

2010 (1)

2009 (2)

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

2005 (2)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005).
[CrossRef] [PubMed]

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

2004 (2)

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B78(3–4), 363–366 (2004).
[CrossRef]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004).
[CrossRef] [PubMed]

2000 (1)

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

1997 (1)

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domain in quasi-phase-matched wavelength converters,” J. Appl. Phys.81(1), 369–375 (1997).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Albota, M. A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Cha, M.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

Chang, D.

Diamanti, E.

Dierolf, V.

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B78(3–4), 363–366 (2004).
[CrossRef]

Fejer, M. M.

Galvanauskas, A.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kang, C. H.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Kang, Y. S.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

Kim, B. J.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

Kitaeva, G. K.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Kurimura, S.

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domain in quasi-phase-matched wavelength converters,” J. Appl. Phys.81(1), 369–375 (1997).
[CrossRef]

Langrock, C.

Lee, Y.-S.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

Lim, H. H.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Meade, T.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

Naudeau, M. L.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

Naumova, I. I.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Norris, T. B.

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

Pandiyan, K.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express17(20), 17862–17867 (2009).
[CrossRef] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

Pelc, J. S.

Penin, A. N.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Phillips, C. R.

Roussev, R. V.

Sandmann, C.

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B78(3–4), 363–366 (2004).
[CrossRef]

Takesue, H.

Tang, S. H.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Tishkova, V. V.

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Uesu, Y.

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domain in quasi-phase-matched wavelength converters,” J. Appl. Phys.81(1), 369–375 (1997).
[CrossRef]

Wong, F. N.

Yamamoto, Y.

Zhang, Q.

Appl. Phys. B (2)

V. Dierolf and C. Sandmann, “Inspection of periodically poled waveguide devices by confocal luminescence microscopy,” Appl. Phys. B78(3–4), 363–366 (2004).
[CrossRef]

G. K. Kitaeva, V. V. Tishkova, I. I. Naumova, A. N. Penin, C. H. Kang, and S. H. Tang, “Mapping of periodically poled crystals via spontaneous parametric down-conversion,” Appl. Phys. B81(5), 645–650 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Y.-S. Lee, T. Meade, M. L. Naudeau, T. B. Norris, and A. Galvanauskas, “Domain mapping of periodically poled lithium niobate via terahertz wave form analysis,” Appl. Phys. Lett.77(16), 2488–2490 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically poled ferroelectric domain in quasi-phase-matched wavelength converters,” J. Appl. Phys.81(1), 369–375 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi‐ phase‐ matched devices by far‐field diffraction pattern analysis,” Proc. SPIE7197, 71970R (2009).

Other (1)

Manuscript in preparation by the authors.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of random domain model. (Ps: spontaneous polarization)

Fig. 2
Fig. 2

Far-field diffraction patterns for PPLN (a) and reference grating (b). Inset of (a) is a CCD-image. Two bright spots indicate the first and second orders (look larger due to saturation of CCD). The region between them was enhanced to show small diffraction noise. Solid curves were calculated by Eq. (3) with ε = 10% for PPLN (a) and ε = 1.7% for the reference (b).

Fig. 3
Fig. 3

Histograms showing statistics of the widths of poled (a) and unpoled (b) domains with corresponding Gaussian distributions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t(x)=rect( x L )+ k=1 N Qrect[ x x k r + x k l 2 x k r x k l ]
E(ξ)=A t(x) e 2iπξx dx
I(ξ)= B | Q | 2 (Λξ) 2 [ 1 2N (1f(ξ))+f(ξ) sin 2 (πξΛ R ¯ ) ( sin(πΛNξ) Nsin(πΛξ) ) 2 ]
I n I 1 = I(X=1.5) I(X=1) (πε) 2 2N sin 2 (π R ¯ )

Metrics