Abstract

We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012).
    [CrossRef] [PubMed]
  2. U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
    [CrossRef] [PubMed]
  3. O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
    [CrossRef]
  4. D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
    [CrossRef] [PubMed]
  5. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
    [CrossRef]
  6. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
    [CrossRef] [PubMed]
  7. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
    [CrossRef]
  8. C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
    [CrossRef] [PubMed]
  9. I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
    [CrossRef] [PubMed]
  10. T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
    [CrossRef]
  11. D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
    [CrossRef] [PubMed]
  12. D. Hahn, P. Thibault, M. Bech, M. Stockmar, S. Schleede, I. Zanette, A. Rack, T. Weitkamp, A. Sztrókay, T. Schlossbauer, F. Bamberg, M. Reiser, and F. Pfeiffer, “Numerical comparison of X-ray differential phase contrast and attenuation contrast,” Biomed. Opt. Express3(6), 1141–1148 (2012).
    [CrossRef] [PubMed]
  13. P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011).
    [CrossRef] [PubMed]
  14. T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
    [CrossRef] [PubMed]
  15. R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011).
    [CrossRef] [PubMed]
  16. E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
    [CrossRef] [PubMed]
  17. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012).
    [CrossRef] [PubMed]
  18. E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
    [CrossRef] [PubMed]
  19. P. C. Diemoz, A. Bravin, M. Langer, and P. Coan, “Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques,” Opt. Express20(25), 27670–27690 (2012).
    [CrossRef] [PubMed]
  20. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
    [CrossRef] [PubMed]
  21. G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
    [CrossRef] [PubMed]
  22. K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
    [CrossRef] [PubMed]
  23. J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
    [CrossRef] [PubMed]
  24. X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
    [CrossRef] [PubMed]
  25. T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
    [CrossRef] [PubMed]
  26. T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
    [CrossRef]
  27. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
    [CrossRef] [PubMed]
  28. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
    [CrossRef] [PubMed]
  29. F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
    [CrossRef] [PubMed]
  30. G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt.27(24), 5202–5212 (1988).
    [CrossRef] [PubMed]
  31. D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
    [CrossRef] [PubMed]
  32. J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
    [CrossRef]
  33. D. M. Paganin, Coherent X-Ray Optics (Oxford University, 2009).
  34. J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (Radiation and Biomolecular Physics Division, PML, NIST, 1996).
  35. L. Kissel, “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem.59(2), 185–200 (2000).
    [CrossRef]
  36. J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
    [CrossRef]
  37. H. H. Barrett and K. J. Myers, Foundations of Image Science (John Wiley, 2003).
  38. U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
    [CrossRef] [PubMed]
  39. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am.38(2), 196–208 (1948).
    [CrossRef] [PubMed]
  40. A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
    [PubMed]

2013 (4)

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

2012 (7)

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

D. Hahn, P. Thibault, M. Bech, M. Stockmar, S. Schleede, I. Zanette, A. Rack, T. Weitkamp, A. Sztrókay, T. Schlossbauer, F. Bamberg, M. Reiser, and F. Pfeiffer, “Numerical comparison of X-ray differential phase contrast and attenuation contrast,” Biomed. Opt. Express3(6), 1141–1148 (2012).
[CrossRef] [PubMed]

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012).
[CrossRef] [PubMed]

P. C. Diemoz, A. Bravin, M. Langer, and P. Coan, “Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques,” Opt. Express20(25), 27670–27690 (2012).
[CrossRef] [PubMed]

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

2011 (8)

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011).
[CrossRef] [PubMed]

T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
[CrossRef] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011).
[CrossRef] [PubMed]

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
[CrossRef] [PubMed]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

2007 (2)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

2006 (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

2005 (2)

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

2003 (1)

O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
[CrossRef]

2002 (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

2000 (1)

L. Kissel, “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem.59(2), 185–200 (2000).
[CrossRef]

1996 (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

1995 (1)

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

1988 (2)

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

G. W. Faris and R. L. Byer, “Three-dimensional beam-deflection optical tomography of a supersonic jet,” Appl. Opt.27(24), 5202–5212 (1988).
[CrossRef] [PubMed]

1948 (1)

Anton, G.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Arsenian Henriksson, M.

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

Aslund, M.

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

Bamberg, F.

Baró, J.

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

Bartl, P.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Baruchel, J.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Bayer, F.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Bech, M.

Bevins, N.

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

Bravin, A.

Brismar, H.

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Burvall, A.

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

Byer, R. L.

Chapman, D.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Chapman, L. D.

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Chen, G. H.

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

Cloetens, P.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

Cnudde, V.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Coan, P.

Connor, D. M.

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Danielsson, M.

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

David, C.

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

Diaz, A.

Diemoz, P. C.

Dierick, M.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Durst, J.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Fandos-Morera, A.

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

Faris, G. W.

Fernandezvarea, J. M.

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

Fezzaa, K.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Fiedler, S.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Flohr, T.

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012).
[CrossRef] [PubMed]

Flohr, T. G.

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011).
[CrossRef] [PubMed]

Fogarty, D. P.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Fredenberg, E.

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

Gao, D.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Gureyev, T. E.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Haas, W.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Hahn, D.

Härtwig, J.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Hemberg, O.

O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
[CrossRef]

Hertz, H. M.

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
[CrossRef]

Jacobs, P.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Jürgen Engel, K.

T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
[CrossRef] [PubMed]

Karjalainen-Lindsberg, M. L.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Kaufmann, R.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

Keyriläinen, J.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Khelashvili, G.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Kissel, L.

L. Kissel, “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem.59(2), 185–200 (2000).
[CrossRef]

Köhler, T.

T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
[CrossRef] [PubMed]

Kottler, C.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Langer, M.

Larsson, D. H.

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

Leidenius, M.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Li, K.

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

Lundström, U.

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

Masschaele, B.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Mayo, S. C.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

Michel, T.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Miller, P. R.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

Modregger, P.

Muehleman, C.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Nesch, I.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Otendal, M.

O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
[CrossRef]

Paganin, D.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

Pagot, E.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Parham, C.

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Pfeiffer, F.

D. Hahn, P. Thibault, M. Bech, M. Stockmar, S. Schleede, I. Zanette, A. Rack, T. Weitkamp, A. Sztrókay, T. Schlossbauer, F. Bamberg, M. Reiser, and F. Pfeiffer, “Numerical comparison of X-ray differential phase contrast and attenuation contrast,” Biomed. Opt. Express3(6), 1141–1148 (2012).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005).
[CrossRef] [PubMed]

Pinzer, B. R.

Pisano, E. D.

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Pogany, A.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Prats-Esteve, M.

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

Qi, Z.

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

Qi, Z. H.

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

Rack, A.

Raupach, R.

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012).
[CrossRef] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011).
[CrossRef] [PubMed]

Reinhart, B.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Reiser, M.

Revol, V.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

Ritter, A.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Roessl, E.

T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
[CrossRef] [PubMed]

Rose, A.

Rutishauser, S.

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011).
[CrossRef] [PubMed]

Salvat, F.

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

Schleede, S.

Schlossbauer, T.

Scott, L.

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

Sempau, J.

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

Siewerdsen, J. H.

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

Stampanoni, M.

Stayman, J. W.

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

Stevenson, A. W.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Stockmar, M.

Straumann, U.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

Sztrókay, A.

Takman, P. A.

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

Takman, P. A. C.

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express19(11), 10359–10376 (2011).
[CrossRef] [PubMed]

Tang, S.

X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
[CrossRef] [PubMed]

Tang, X.

X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
[CrossRef] [PubMed]

Thibault, P.

Thüring, T.

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011).
[CrossRef] [PubMed]

Traveria-Cros, A.

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

Tura-Soteras, J. M.

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

Tzvetkov, T.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Urban, C.

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

van Hoorebeke, L.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Vlassenbroeck, J.

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

von Smitten, K.

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

Walus, A. C.

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Weber, T.

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

Weitkamp, T.

Westermark, U. K.

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

Wilhelm, M.

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

Wilkins, S. W.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Yang, Y.

X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
[CrossRef] [PubMed]

Zambelli, J.

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

Zanette, I.

Zhong, Z.

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Zhou, T.

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

Ziegler, E.

Acad. Radiol. (1)

C. Parham, Z. Zhong, D. M. Connor, L. D. Chapman, and E. D. Pisano, “Design and implementation of a compact low-dose diffraction enhanced medical imaging system,” Acad. Radiol.16(8), 911–917 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

O. Hemberg, M. Otendal, and H. M. Hertz, “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett.83(7), 1483–1485 (2003).
[CrossRef]

T. Thüring, T. Zhou, U. Lundström, A. Burvall, S. Rutishauser, C. David, H. M. Hertz, and M. Stampanoni, “X-ray grating interferometry with a liquid-metal-jet source,” Appl. Phys. Lett.103(9), 091105 (2013).
[CrossRef]

Biomed. Opt. Express (1)

J. Microsc. (1)

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206(1), 33–40 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Conf. Ser. (1)

T. Zhou, U. Lundström, D. H. Larsson, H. M. Hertz, and A. Burvall, “Low-dose phase-contrast X-ray imaging: a comparison of two methods,” J. Phys. Conf. Ser.463, 012041 (2013).
[CrossRef]

Med. Phys. (9)

G. H. Chen, J. Zambelli, K. Li, N. Bevins, and Z. H. Qi, “Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography,” Med. Phys.38(2), 584–588 (2011).
[CrossRef] [PubMed]

K. Li, N. Bevins, J. Zambelli, and G. H. Chen, “Fundamental relationship between the noise properties of grating-based differential phase contrast CT and absorption CT: theoretical framework using a cascaded system model and experimental validation,” Med. Phys.40(2), 021908 (2013).
[CrossRef] [PubMed]

J. Zambelli, N. Bevins, Z. Qi, and G. H. Chen, “Radiation dose efficiency comparison between differential phase contrast CT and conventional absorption CT,” Med. Phys.37(6), 2473–2479 (2010).
[CrossRef] [PubMed]

X. Tang, Y. Yang, and S. Tang, “Characterization of imaging performance in differential phase contrast CT compared with the conventional CT--noise power spectrum NPS(k),” Med. Phys.38(7), 4386–4395 (2011).
[CrossRef] [PubMed]

T. Weber, P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel, A. Ritter, and G. Anton, “Noise in x-ray grating-based phase-contrast imaging,” Med. Phys.38(7), 4133–4140 (2011).
[CrossRef] [PubMed]

D. H. Larsson, U. Lundström, U. K. Westermark, M. Arsenian Henriksson, A. Burvall, and H. M. Hertz, “First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation,” Med. Phys.40(2), 021909 (2013).
[CrossRef] [PubMed]

T. Köhler, K. Jürgen Engel, and E. Roessl, “Noise properties of grating-based x-ray phase contrast computed tomography,” Med. Phys.38(S1), S106–S116 (2011).
[CrossRef] [PubMed]

E. Fredenberg, M. Danielsson, J. W. Stayman, J. H. Siewerdsen, and M. Aslund, “Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach,” Med. Phys.39(9), 5317–5335 (2012).
[CrossRef] [PubMed]

R. Raupach and T. Flohr, “Performance evaluation of x-ray differential phase contrast computed tomography (PCT) with respect to medical imaging,” Med. Phys.39(8), 4761–4774 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Nat. Phys. (1)

F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006).
[CrossRef]

Nature (1)

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

J. Vlassenbroeck, M. Dierick, B. Masschaele, V. Cnudde, L. van Hoorebeke, and P. Jacobs, “Software tools for quantification of X-ray microtomography,” Nucl. Instrum. Methods Phys. Res. A580(1), 442–445 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Baró, J. Sempau, J. M. Fernandezvarea, and F. Salvat, “Penelope - an algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter,” Nucl. Instrum. Methods Phys. Res. B100(1), 31–46 (1995).
[CrossRef]

Opt. Express (5)

Phys. Med. Biol. (4)

E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging,” Phys. Med. Biol.50(4), 709–724 (2005).
[CrossRef] [PubMed]

R. Raupach and T. G. Flohr, “Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography,” Phys. Med. Biol.56(7), 2219–2244 (2011).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, P. A. Takman, L. Scott, H. Brismar, and H. M. Hertz, “X-ray phase contrast for CO2 microangiography,” Phys. Med. Biol.57(9), 2603–2617 (2012).
[CrossRef] [PubMed]

U. Lundström, D. H. Larsson, A. Burvall, L. Scott, U. K. Westermark, M. Wilhelm, M. Arsenian Henriksson, and H. M. Hertz, “X-ray phase-contrast CO2 angiography for sub-10 μm vessel imaging,” Phys. Med. Biol.57(22), 7431–7441 (2012).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

F. Pfeiffer, C. Kottler, O. Bunk, and C. David, “Hard x-ray phase tomography with low-brilliance sources,” Phys. Rev. Lett.98(10), 108105 (2007).
[CrossRef] [PubMed]

Radiat. Phys. Chem. (1)

L. Kissel, “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem.59(2), 185–200 (2000).
[CrossRef]

Radiology (1)

A. Fandos-Morera, M. Prats-Esteve, J. M. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: composition of microcalcifications,” Radiology169(2), 325–327 (1988).
[PubMed]

Rev. Sci. Instrum. (3)

V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010).
[CrossRef] [PubMed]

D. H. Larsson, P. A. C. Takman, U. Lundström, A. Burvall, and H. M. Hertz, “A 24 keV liquid-metal-jet x-ray source for biomedical applications,” Rev. Sci. Instrum.82(12), 123701 (2011).
[CrossRef] [PubMed]

I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum.80(9), 093702 (2009).
[CrossRef] [PubMed]

Other (3)

D. M. Paganin, Coherent X-Ray Optics (Oxford University, 2009).

J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest (Radiation and Biomolecular Physics Division, PML, NIST, 1996).

H. H. Barrett and K. J. Myers, Foundations of Image Science (John Wiley, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental arrangement for PBI consisting of the x-ray source, the object and the detector. (b) The same for GBI also including phase (G1) and absorption (G2) gratings. (c) The emission spectrum of the Ga/In/Sn liquid-metal-jet x-ray source after passage through the liquid-paraffin bath.

Fig. 2
Fig. 2

Schematic illustration of the simulation process for GBI, where × indicates multiplication and convolution. For PBI, the principle is the same but G1 and G2 are not included.

Fig. 3
Fig. 3

Simulated and experimental PBI (a-e) and DPC images (f-j) of a phantom consisting of four PET monofilaments in a liquid-paraffin bath. Their diameters were found to be 494, 213, 100 and 23 µm respectively by matching the widths of the simulated images to the experimental ones [38]. Projections (c, h) have 4 h total exposure time. Profiles are integrated vertically over 33 pixels from the images above them. Slices from tomographic reconstructions (e, j) have an exposure time of 30 h.

Fig. 4
Fig. 4

Simulated dose required for detecting a PET cylinder, in a liquid-paraffin bath, as a function of the cylinder diameter. Simulations for DPC and PBI were done both with a liquid-metal-jet source spectrum and for 25 keV monochromatic x-rays. For the DPC Polychromatic Adjusted line, the visibility was adjusted to agree with the experiments. Similarly, the signal of the PBI Polychromatic Adjusted line was modified to match experimental data.

Fig. 5
Fig. 5

Projection images of a breast biopsy sample using (a) PBI and (b) GBI absorption and (c) GBI DPC. The exposure time is 16 min per projection for PBI and 2 min times 8 steps for GBI. Inserts (d) and (e) are the enlarged views of a region of 0.5 × 0.4 mm2, containing calcifications, for PBI and GBI absorption respectively. (a, b, d, e) have a linear color scale from 0.5 to 1.05, where the background is normalized to 1, and (c) from –π to π. Tomography slices using (f) PBI with 5 min exposure time per projection, (g) absorption and (h) DPC from the same data set with 1 min exposure time per phase-scanning step and 5 steps per projection direction. The images were acquired over 360° with 0.5° increment for both methods.

Fig. 6
Fig. 6

Magnified images of calcifications (upper row) and adipose tissue (lower row) of PBI reconstructed using parameters of breast tissue and calcifications (a, b) from CT slice Fig. 5(f), PBI reconstructed using parameters of breast tissue and adipose tissue (c, d), GBI DPC (e, f) from CT slice Fig. 5(h), and GBI absorption from slice Fig. 5(g).

Tables (1)

Tables Icon

Table 1 Geometry parameters of the experiments given as distances from the source

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(n)= I 0 +acos( 2πn N +φ ), with n=0, 1, ..., N-1,
c(k)= 1 N n=0 N1 I(n) e i2π n N k ,
I 0 =c(0), a=2| c(1) |, φ=arg[ c(1) ].
V= a I 0
SNR 2 = | ΔG(u) | 2 NPS(u) d 2 u ,
σ φ 2 = 2 V 2 (N I 0 ) 2 n=0 N1 σ n 2 .
NPS φ = 2 V 2 (N I 0 ) 2 n=0 N1 NPS n .

Metrics