Abstract

We present an optimization of spot-size converter (SSC) of waveguide photodetector (PD) for small polarization dependent loss (PDL). Beam-propagation method simulation gives responsivity for each polarization and SSC structure. From the calculated responsivity data, optimum structure of SSC is determined that can be implemented with a sufficient process tolerance. We confirm the optimization by measuring PDL of waveguide PD designed according to the structure obtained through the simulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. OIF, “Implementation agreements for integrated dual polarization intradyne coherent receivers,” (2011).
  2. J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
    [CrossRef]
  3. Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
    [CrossRef]
  4. Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
    [CrossRef]
  5. I. Moerman and P. P. Van Daele, “A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
    [CrossRef]
  6. H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).
  7. J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).
  8. H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
    [CrossRef]
  9. J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
    [CrossRef]
  10. T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).
  11. J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
    [CrossRef]
  12. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
    [CrossRef]

2010 (1)

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

2005 (2)

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

2003 (1)

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

2002 (2)

H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
[CrossRef]

J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
[CrossRef]

2001 (1)

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

1998 (1)

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

1997 (1)

I. Moerman and P. P. Van Daele, “A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

Abeles, J. H.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Adesida, I.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Bach, H.-G.

H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
[CrossRef]

Bae, J. W.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Bakker, A. F.

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

Beling, A.

H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
[CrossRef]

Choe, J.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Choi, B.

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Choi, K.

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Chung, Y. D.

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

Duthel, T.

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).

Fludger, C. R. S.

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).

Forrest, S. R.

J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
[CrossRef]

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Geyer, J.

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).

Gokhale, M. R.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Groen, F. H.

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

Jang, J. H.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Ju, J.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Kang, Y. S.

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

Kim, J.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Kim, K.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Kim, M.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Kim, S. B.

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

Kudo, K.

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

Kwakernaak, M.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Kwon, Y.

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Lee, J.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Lepore, A.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Lin, W.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Mekonnen, G. G.

H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
[CrossRef]

Moerman, I.

I. Moerman and P. P. Van Daele, “A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

Park, S.

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Sasaki, J.

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

Sasaki, T.

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

Schulien, C.

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).

Smit, M. K.

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

Studenkov, P. V.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Stulemeijer, J.

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

Thomson, J. K.

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Van Daele, P. P.

I. Moerman and P. P. Van Daele, “A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

Wei, J.

J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
[CrossRef]

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Xia, F.

J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
[CrossRef]

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

Yamazaki, H.

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

Yun, H.

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

Zhao, W.

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

ETRI J. (1)

Y. Kwon, J. Choe, J. Kim, K. Kim, K. Choi, B. Choi, and H. Yun, “Fabrication of 40 Gb/s front-end optical receivers using spot-size converter integrated waveguide photodiodes,” ETRI J.27(5), 484–490 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Wei, F. Xia, and S. R. Forrest, “A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode,” IEEE Photon. Technol. Lett.14(11), 1590–1592 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Yamazaki, K. Kudo, T. Sasaki, and J. Sasaki, “1.3-μm spot-size-converter integrated laser diodes fabricated by narrow-stripe selective MOVPE,” IEEE J. Sel. Top. Quantum Electron.3(6), 1392–1398 (1998).

IEEE J. Sel. Top. Quantum Electron. (1)

H.-G. Bach, A. Beling, and G. G. Mekonnen, “Design and fabrication of 60-Gb/s InP-based monolithic photoreceiver OEICs and modules,” IEEE J. Sel. Top. Quantum Electron.8(6), 1445–1450 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Moerman and P. P. Van Daele, “A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. S. Kang, S. B. Kim, Y. D. Chung, and J. Kim, “Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices,” IEEE Photon. Technol. Lett.17(11), 2304–2306 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin, and S. R. Forrest, “An asymmetric twin-waveguide high-bandwidth photodiode using a lateral taper coupler,” IEEE Photon. Technol. Lett.13(8), 845–847 (2001).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. W. Bae, W. Zhao, J. H. Jang, I. Adesida, A. Lepore, M. Kwakernaak, and J. H. Abeles, “Characterization of sidewall roughness of InP/InGaAsP etched using inductively coupled plasma for low loss optical waveguide applications,” J. Vac. Sci. Technol. B21(6), 2888 (2003).
[CrossRef]

Semiconductor Sci. Technol. (1)

J. Choe, K. Kim, S. Park, J. Kim, J. Lee, M. Kim, S. Park, and J. Ju, “A spot-size converter-integrated 1.3 μm TM mode LD for coupling with surface-plasmon polariton waveguides,” Semiconductor Sci. Technol.25(3), 035003 (2010).
[CrossRef]

Other (3)

OIF, “Implementation agreements for integrated dual polarization intradyne coherent receivers,” (2011).

J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smit, “Efficient InP-based integrable spot-size converter,” in Integrated Photonics Research, 4 (Optical Society of America, 1998).

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK,” in 2008 Conference on Optical Fiber Communication (IEEE, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structure of the device investigated in this study. SSC is composed of two lateral tapers and diluted waveguide.

Fig. 2
Fig. 2

Evolution of launched beam into PD when the beam is (a) TE- and (b) TM-polarized. When TE-polarized, the launched beam escapes from the diluted waveguide at the early stage of the lower taper. On the other hand, TM-polarized beam stays in the diluted waveguide until the upper taper appears.

Fig. 3
Fig. 3

Calculated responsivity as a function of absorber length (left axis). In this case responsivity depends strongly on the polarization of incident beam. PDL is obtained from the two responsivity curves (right axis). PDL is saturated when the absorber is longer than 10 μm.

Fig. 4
Fig. 4

Contour map of estimated responsivity in (a) TE- and (b) TM-polarization. Responsivity varies from 0.56 to 0.76 A/W in TE-polarization, and from 0.52 to 0.73 A/W in TM-polarization. Although maximum and minimum values of the responsivity are similar for both the polarizations, the contour maps are quite different from each other.

Fig. 5
Fig. 5

Contour plot of calculated PDL. PDL changes from 0.0 to 1.1 dB, and there exist wide region with low PDL. Combination of tapers A was chosen as the optimum design for device fabrication. For the comparison, combination B was also chosen.

Fig. 6
Fig. 6

Dependence of responsivity upon the position of cleaved SMF. 1 dB alignment tolerance is 4.5μm and and 5.0 μm in vertical and horizontal direction, respectively. At the optimum position the responsivity is 0.46 A/W.

Fig. 7
Fig. 7

Photocurrent fluctuation with the change in the polarization of incident beam. PD-B, the device with unoptimized SSC, shows PDL of 1.43 dB. On the other hand, PD-A has optimized SSC and its photocurrent fluctuation is so small that PDL is as low as 0.14 dB.

Tables (2)

Tables Icon

Table 1 Refractive indices and roles of the materials used in simulation.

Tables Icon

Table 2 Physical dimensions of each elements of SSC.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = I photo P input = P abs P input q λ h c P abs P input λ ( μ m ) 1.24 ( A / W ) = 1.25 × P abs P input ( A / W ) if λ = 1.55 μ m
PDL ( dB ) = 10 | log R T E R T M | ,

Metrics