Abstract

In this paper, we demonstrate that the sensitivity of Faraday effect based heterodyning fiber laser sensors for magnetic field can be effectively enhanced by lowering the intrinsic linear birefringence inside the fiber laser cavity. Well explained by theoretical analysis and confirmed by birefringence tuning through transversal force, it shows that the sensitivity to magnetic field intensity is inversely proportional to the linear birefringence. A CO2-laser treatment is therefore proposed to tune the intra-cavity linear birefringence. With CO2-laser treatment, the intra-cavity linear birefringence can be lowered permanently to effectively enhance the sensitivity of a heterodyning fiber laser sensor to magnetic field.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ampere force based magnetic field sensor using dual-polarization fiber laser

Linghao Cheng, Zhenzhen Guo, Jianlei Han, Long Jin, and Bai-Ou Guan
Opt. Express 21(11) 13419-13424 (2013)

Highly-sensitive magnetic field sensor based on fiber ring laser

Ming Deng, Danhui Liu, Wei Huang, and Tao Zhu
Opt. Express 24(1) 645-651 (2016)

Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser

Linghao Cheng, Jianlei Han, Zhenzhen Guo, Long Jin, and Bai-Ou Guan
Opt. Lett. 38(5) 688-690 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, “Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser,” Opt. Lett. 38(5), 688–690 (2013).
    [Crossref] [PubMed]
  2. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  3. B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
    [Crossref]
  4. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009).
    [Crossref]
  5. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
    [Crossref]
  6. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
    [Crossref]
  7. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [Crossref]
  8. Y. Zhang, B.-O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
    [Crossref] [PubMed]
  9. M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
    [Crossref]
  10. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  11. M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
    [Crossref]
  12. Y. Zhang, Y. N. Tan, T. Guo, and B. O. Guan, “Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications,” Opt. Express 19(1), 218–223 (2011).
    [Crossref] [PubMed]
  13. M.-P. Li, L. Jin, and B.-O. Guan, “Wavelength/frequency-division multiplexing of heterodyning fiber grating laser sensors with the assistance of CO2-laser treatment,” Proc. SPIE 8421, 84211N (2012).
  14. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22(2), 625–630 (2004).
    [Crossref]
  15. Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47(29), 5296–5304 (2008).
    [Crossref] [PubMed]
  16. L. Jin, W. Jin, and J. Ju, “Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber,” J. Lightwave Technol. 27(21), 4884–4891 (2009).
    [Crossref]
  17. H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
    [Crossref]

2013 (1)

2012 (2)

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
[Crossref]

M.-P. Li, L. Jin, and B.-O. Guan, “Wavelength/frequency-division multiplexing of heterodyning fiber grating laser sensors with the assistance of CO2-laser treatment,” Proc. SPIE 8421, 84211N (2012).

2011 (1)

2010 (1)

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

2009 (4)

2008 (2)

Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, “Measurement of CO2-laser-irradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication,” Appl. Opt. 47(29), 5296–5304 (2008).
[Crossref] [PubMed]

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

2004 (1)

1998 (1)

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

1992 (1)

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
[Crossref]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

1979 (1)

1968 (1)

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[Crossref]

Alhassen, F.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

Chan, H. M.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

Cheng, L.

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009).
[Crossref]

Dai, J.

Dong, J.

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009).
[Crossref]

Freiser, M. J.

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[Crossref]

Guan, B. O.

Guan, B.-O.

Guo, T.

Guo, Z.

Han, J.

Hashimoto, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
[Crossref]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

Jiang, D.

Jin, L.

Jin, W.

Ju, J.

Kim, B. Y.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Kirkendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009).
[Crossref]

Kurosawa, K.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
[Crossref]

Lan, X.

Lee, H. P.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

Lee, M. L.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Lee, W. J.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Lee, Y. H.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Li, M.-P.

M.-P. Li, L. Jin, and B.-O. Guan, “Wavelength/frequency-division multiplexing of heterodyning fiber grating laser sensors with the assistance of CO2-laser treatment,” Proc. SPIE 8421, 84211N (2012).

Li, Y.

Miyake, Y.

Montoya, J. A.

Morishita, K.

Nara, M.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
[Crossref]

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

Park, J. S.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Saini, S. V.

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

Simon, A.

Tam, H. Y.

Tam, H.-Y.

Tan, Y. N.

Tang, X.

Tomov, I. V.

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
[Crossref] [PubMed]

Wang, S.-N.

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

Wei, T.

Xiao, H.

Yang, M.

Yoshino, T.

T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, “Common path heterodyne optical fiber sensors,” J. Lightwave Technol. 10(4), 503–513 (1992).
[Crossref]

Yun, S. H.

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Zhang, Y.

Zhou, C.

Appl. Opt. (2)

Electron. Lett. (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of Verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 906–907 (1984).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B.-O. Guan and S.-N. Wang, “Fiber grating laser current sensor based on magnetic force,” IEEE Photonics Technol. Lett. 22(4), 230–232 (2010).
[Crossref]

H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, “Fabrication and mode identification of compact long-period gratings written by CO2 laser,” IEEE Photonics Technol. Lett. 20(8), 611–613 (2008).
[Crossref]

IEEE Trans. Magn. (1)

M. J. Freiser, “A survey of magnetooptic effects,” IEEE Trans. Magn. 4(2), 152–161 (1968).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (2)

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force,” Meas. Sci. Technol. 20(3), 034023 (2009).
[Crossref]

M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, “A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser,” Meas. Sci. Technol. 9(6), 952–959 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

M.-P. Li, L. Jin, and B.-O. Guan, “Wavelength/frequency-division multiplexing of heterodyning fiber grating laser sensors with the assistance of CO2-laser treatment,” Proc. SPIE 8421, 84211N (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experiment setup to tune the intra-cavity intrinsic linear birefringence of fiber lasers through (a) transversal force and (b) CO2-laser treatment.
Fig. 2
Fig. 2 Experiment setup for magnetic field sensing by a dual-polarization fiber grating laser through Faraday effect. ISO: Isolator; WDM: Wavelength division multiplexer; PC: Polarization controller. PD: Photodetector.
Fig. 3
Fig. 3 Measured frequency shifts in a 4500 G magnetic field for various beat frequencies. Calculations by theory are shown as solid lines.
Fig. 4
Fig. 4 The measured spectrums of the beat notes before (solid line) and after (shot dot line) CO2-laser treatment of the dual-polarization fiber grating laser.
Fig. 5
Fig. 5 Measured beat frequency shifts for various magnetic field magnitudes. Calculations by theory are shown as the solid lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δν= c n 0 λ 0 B
Ω= α 2 + β 2
α=2VH
Δν c 2π n 0 β+ c π n 0 β ( VH ) 2

Metrics