Abstract

We demonstrate the use of surface acoustic wave nebulization (SAWN) to load optical traps. We show that the droplets sizes produced can be tuned by altering the RF frequency applied to the devices, which leads to more control over the sizes of trapped particles. Typically the size distribution of the liquid aerosols delivered using SAWN is smaller than via a standard commercial nebulization device. The ability to trap a range of liquids or small solid particles, not readily accessible using other ultrasonic devices, is also demonstrated both in optical tweezers and dual beam fiber traps.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
    [CrossRef]
  2. A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
    [CrossRef] [PubMed]
  3. M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011).
    [CrossRef] [PubMed]
  4. J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
    [CrossRef]
  5. S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012).
    [CrossRef] [PubMed]
  6. J. F. Kok, “A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle,” Proc. Natl. Acad. Sci. U.S.A.108(3), 1016–1021 (2011).
    [CrossRef] [PubMed]
  7. L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
    [CrossRef] [PubMed]
  8. G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
    [CrossRef]
  9. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
    [CrossRef]
  10. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4175–4181 (2006).
    [CrossRef] [PubMed]
  11. M. D. Summers, D. R. Burnham, and D. McGloin, “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps,” Opt. Express16(11), 7739–7747 (2008).
    [CrossRef] [PubMed]
  12. J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
    [CrossRef] [PubMed]
  13. D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009).
    [CrossRef]
  14. D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
    [CrossRef] [PubMed]
  15. D. R. Burnham and D. McGloin, “Modelling of optical traps for aerosols,” J. Opt. Soc. Am. B28(12), 2856–2864 (2011).
    [CrossRef]
  16. M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
    [CrossRef] [PubMed]
  17. R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
    [CrossRef] [PubMed]
  18. C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
    [CrossRef]
  19. M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
    [CrossRef]
  20. K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
    [CrossRef]
  21. J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
    [CrossRef]
  22. P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
    [CrossRef] [PubMed]
  23. L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008).
    [CrossRef]
  24. J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
    [CrossRef] [PubMed]
  25. S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
    [CrossRef] [PubMed]
  26. Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
    [CrossRef] [PubMed]
  27. J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
    [CrossRef]
  28. A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
    [CrossRef] [PubMed]
  29. R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am.34(1), 6–8 (1962).
    [CrossRef]
  30. F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
    [CrossRef]
  31. D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express16(19), 14550–14560 (2008).
    [CrossRef] [PubMed]
  32. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
    [CrossRef] [PubMed]
  33. R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
    [CrossRef] [PubMed]

2012

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012).
[CrossRef] [PubMed]

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

2011

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

D. R. Burnham and D. McGloin, “Modelling of optical traps for aerosols,” J. Opt. Soc. Am. B28(12), 2856–2864 (2011).
[CrossRef]

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
[CrossRef] [PubMed]

J. F. Kok, “A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle,” Proc. Natl. Acad. Sci. U.S.A.108(3), 1016–1021 (2011).
[CrossRef] [PubMed]

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011).
[CrossRef] [PubMed]

2010

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
[CrossRef] [PubMed]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

2009

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
[CrossRef] [PubMed]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009).
[CrossRef]

2008

2006

2005

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

2004

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

2002

G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
[CrossRef]

F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
[CrossRef]

2000

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

1995

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

1962

R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am.34(1), 6–8 (1962).
[CrossRef]

Allen, H. C.

S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012).
[CrossRef] [PubMed]

Amaveda, H.

F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
[CrossRef]

Baltensperger, U.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Barreras, F.

F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
[CrossRef]

Bourquin, Y.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

Burnham, D. R.

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Modelling of optical traps for aerosols,” J. Opt. Soc. Am. B28(12), 2856–2864 (2011).
[CrossRef]

D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009).
[CrossRef]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

M. D. Summers, D. R. Burnham, and D. McGloin, “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps,” Opt. Express16(11), 7739–7747 (2008).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4175–4181 (2006).
[CrossRef] [PubMed]

Butler, J. R.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

Carslaw, K. S.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Chono, K.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

Cooper, J. M.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

de Boer, A. H.

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

Dhand, R.

M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011).
[CrossRef] [PubMed]

Ding, Y.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Dolovich, M. B.

M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011).
[CrossRef] [PubMed]

Dommen, J.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Duplissy, J.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Esen, C.

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

Fallnich, C.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
[CrossRef] [PubMed]

Fan, J.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Friend, J.

J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

Friend, J. R.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008).
[CrossRef]

Frijlink, H. W.

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

Futami, A.

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

Goodlett, D. R.

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

Gutiérrez-Vega, J. C.

Heijerman, H. G.

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

Heron, S. R.

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

Higuchi, T.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

Horstmann, M.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
[CrossRef] [PubMed]

Ismail, M. H.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Jones, J. M.

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

Kaduchak, G.

G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
[CrossRef]

Kheifets, S.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

Kim, J. W.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Kok, J. F.

J. F. Kok, “A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle,” Proc. Natl. Acad. Sci. U.S.A.108(3), 1016–1021 (2011).
[CrossRef] [PubMed]

Kondoh, J.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

Kulmala, M.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Kurosawa, M.

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

Lang, R. J.

R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am.34(1), 6–8 (1962).
[CrossRef]

Le Brun, P. P. H.

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

Lee, B. H.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Lee, S. H.

S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012).
[CrossRef] [PubMed]

Li, T.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

Li, Z.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Liu, Y.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Lizon, D. C.

G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
[CrossRef]

López-Mariscal, C.

Lozano, A.

F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
[CrossRef]

Ma, L.

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

Matsui, Y.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

McGloin, D.

D. R. Burnham and D. McGloin, “Modelling of optical traps for aerosols,” J. Opt. Soc. Am. B28(12), 2856–2864 (2011).
[CrossRef]

D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009).
[CrossRef]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

M. D. Summers, D. R. Burnham, and D. McGloin, “Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps,” Opt. Express16(11), 7739–7747 (2008).
[CrossRef] [PubMed]

D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express16(19), 14550–14560 (2008).
[CrossRef] [PubMed]

D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4175–4181 (2006).
[CrossRef] [PubMed]

McIntosh, M. P.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

Metzger, A.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Miles, R. E. H.

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

Mitchem, L.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

Morton, D. A. V.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

Neale, S. L.

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

Niu, F.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Ohmori, H.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Pederzani, S.

L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
[CrossRef] [PubMed]

Pourkashanian, M.

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

Prevot, A. S.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Probst, K.

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
[CrossRef] [PubMed]

Qi, A.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

Qi, L. Y.

L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008).
[CrossRef]

Raizen, M. G.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

Reboud, J.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

Reece, P. J.

D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
[CrossRef] [PubMed]

Reid, J. P.

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

Riipinen, I.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Rosenfeld, D.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

Rudd, D.

Schweiger, G.

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

Shaffer, S. A.

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

Shahvisi, A.

Shimizu, N.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

Shiokawa, S.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

Sinha, D. N.

G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
[CrossRef]

Spiccia, L.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

Spracklen, D. V.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Sprynchak, V.

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

Summers, M.

Summers, M. D.

Takasaki, M.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Treuel, L.

L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
[CrossRef] [PubMed]

Verheggen, B.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Walker, J. S.

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

Watanabe, T.

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

Weigel, T.

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

Weingartner, E.

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Williams, J. M.

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

Wills, J. B.

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

Wilson, R.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

Yamagata, Y.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Yao, L. Y.

J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

Yeo, L. Y.

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008).
[CrossRef]

Zellner, R.

L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
[CrossRef] [PubMed]

Zhang, Y.

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

Adv. Mater.

Y. Bourquin, R. Wilson, Y. Zhang, J. Reboud, and J. M. Cooper, “Phononic crystals for shaping fluids,” Adv. Mater.23(12), 1458–1462 (2011).
[CrossRef] [PubMed]

Anal. Chem.

S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, and J. M. Cooper, “Surface Acoustic Wave Nebulization of Peptides As a Microfluidic Interface for Mass Spectrometry,” Anal. Chem.82(10), 3985–3989 (2010).
[CrossRef] [PubMed]

S. H. Lee and H. C. Allen, “Analytical measurements of atmospheric urban aerosol,” Anal. Chem.84(3), 1196–1201 (2012).
[CrossRef] [PubMed]

Exp. Fluids

F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization,” Exp. Fluids33(3), 405–413 (2002).
[CrossRef]

J. Acoust. Soc. Am.

R. J. Lang, “Ultrasonic Atomization of Liquids,” J. Acoust. Soc. Am.34(1), 6–8 (1962).
[CrossRef]

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transf.

C. Esen, T. Weigel, V. Sprynchak, and G. Schweiger, “Raman spectroscopy on deformed droplets: theory and experiments,” J. Quant. Spectrosc. Radiat. Transf.89(1-4), 79–85 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

K. Chono, N. Shimizu, Y. Matsui, J. Kondoh, and S. Shiokawa, “Development of Novel Atomization System Based on SAW Streaming,” Jpn. J. Appl. Phys.43(5B), 2987–2991 (2004).
[CrossRef]

Lab Chip

J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, “Nebulisation on a disposable array structured with phononic lattices,” Lab Chip12(7), 1268–1273 (2012).
[CrossRef] [PubMed]

R. Wilson, J. Reboud, Y. Bourquin, S. L. Neale, Y. Zhang, and J. M. Cooper, “Phononic crystal structures for acoustically driven microfluidic manipulations,” Lab Chip11(2), 323–328 (2011).
[CrossRef] [PubMed]

A. Qi, J. R. Friend, L. Y. Yeo, D. A. V. Morton, M. P. McIntosh, and L. Spiccia, “Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization,” Lab Chip9(15), 2184–2193 (2009).
[CrossRef] [PubMed]

M. Horstmann, K. Probst, and C. Fallnich, “Towards an integrated optical single aerosol particle lab,” Lab Chip12(2), 295–301 (2011).
[CrossRef] [PubMed]

J. R. Butler, J. B. Wills, L. Mitchem, D. R. Burnham, D. McGloin, and J. P. Reid, “Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets,” Lab Chip9(4), 521–528 (2009).
[CrossRef] [PubMed]

Lancet

M. B. Dolovich and R. Dhand, “Aerosol drug delivery: developments in device design and clinical use,” Lancet377(9770), 1032–1045 (2011).
[CrossRef] [PubMed]

Nat. Geosci.

Z. Li, F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, “The long-term impacts of aerosols on the vertical development of clouds and precipitation,” Nat. Geosci.4(12), 888–894 (2011).
[CrossRef]

New J. Phys.

D. R. Burnham and D. McGloin, “Radius measurements of optically trapped aerosols through Brownian motion,” New J. Phys.11(6), 063022 (2009).
[CrossRef]

Opt. Express

Pharm. World Sci.

P. P. H. Le Brun, A. H. de Boer, H. G. Heijerman, and H. W. Frijlink, “A review of the technical aspects of drug nebulization,” Pharm. World Sci.22(3), 75–81 (2000).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys.6(21), 4924–4927 (2004).
[CrossRef]

R. E. H. Miles, J. S. Walker, D. R. Burnham, and J. P. Reid, “Retrieval of the complex refractive index of aerosol droplets from optical tweezers measurements,” Phys. Chem. Chem. Phys.14(9), 3037–3047 (2012).
[CrossRef] [PubMed]

L. Treuel, S. Pederzani, and R. Zellner, “Deliquescence behaviour and crystallisation of ternary ammonium sulfate/dicarboxylic acid/water aerosols,” Phys. Chem. Chem. Phys.11(36), 7976–7984 (2009).
[CrossRef] [PubMed]

Phys. Fluids

L. Y. Qi, L. Y. Yeo, and J. R. Friend, “Interfacial destabilization and atomization driven by surface acoustic waves,” Phys. Fluids20(7), 074103 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.82(5), 051123 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. F. Kok, “A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle,” Proc. Natl. Acad. Sci. U.S.A.108(3), 1016–1021 (2011).
[CrossRef] [PubMed]

A. Metzger, B. Verheggen, J. Dommen, J. Duplissy, A. S. Prevot, E. Weingartner, I. Riipinen, M. Kulmala, D. V. Spracklen, K. S. Carslaw, and U. Baltensperger, “Evidence for the role of organics in aerosol particle formation under atmospheric conditions,” Proc. Natl. Acad. Sci. U.S.A.107(15), 6646–6651 (2010).
[CrossRef] [PubMed]

Pror. Energy Combust. Sci.

J. M. Williams, J. M. Jones, L. Ma, and M. Pourkashanian, “Pollutants from the combustion of solid biomass fuels,” Pror. Energy Combust. Sci.38(2), 113–137 (2012).
[CrossRef]

Rev. Mod. Phys.

J. Friend and L. Y. Yao, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys.83(2), 647–704 (2011).
[CrossRef]

Rev. Sci. Instrum.

G. Kaduchak, D. N. Sinha, and D. C. Lizon, “Novel cylindrical, air-coupled levitation/concentration device,” Rev. Sci. Instrum.73(3), 1332–1336 (2002).
[CrossRef]

Science

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the Instantaneous Velocity of a Brownian Particle,” Science328(5986), 1673–1675 (2010).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

M. Kurosawa, T. Watanabe, A. Futami, and T. Higuchi, “Surface acoustic wave atomizer,” Sens. Actuators A Phys.50(1-2), 69–74 (1995).
[CrossRef]

Sens. Actuators B Chem.

J. W. Kim, Y. Yamagata, M. Takasaki, B. H. Lee, H. Ohmori, and T. Higuchi, “A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition,” Sens. Actuators B Chem.107(2), 535–545 (2005).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (58 KB)     
» Media 2: MOV (2197 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SAW device. (a) Top down view. The SAW device is seen on the right of the image – it is a set of inter-digitated electrodes. A droplet of water can be seen to the left of the image. An ink drop (red droplet) is about to be added to the water. Media 1 shows droplet mixing from this device. (b) A SAW nebulization device, as viewed from the side. The plume of nebulized water is clearly seen leaving the substrate, shown in Media 2. Scale bar is 4mm in (a) and 8mm in (b).

Fig. 2
Fig. 2

Experimental setup for optical trapping. A polariser and half-wave plate combination (Pol) and polarising beam splitter (PBS) are used to control the laser trapping power. Two telescopes (5x followed by 1x) are used to deliver the beam to the back aperture of a 100x microscope objective (NA = 1.25). The trapping chamber consists of a Petri dish, which covers both the microscope objective output and the end of the lithium niobate substrate on which the SAW IDT resides.

Fig. 3
Fig. 3

Size distribution data for the nebulization of water using (squares) a medical nebulizer and (circles) a SAW nebulizer. The data are normalised against the most common droplet size in the distribution region. Sizes are plotted on a logarithmic scale.

Fig. 4
Fig. 4

Nebulization rates of different liquids placed on the SAW substrate as a function of applied frequency at a temperature of 20°C.

Fig. 5
Fig. 5

Mean aerosol diameter produced using SAW nebulization as a function of frequency. Circles are measured values, while squares are predictions based on the Kelvin Equation. The inset shows the frequency response of the SAWN device is shown with peaks in the power returned from the device during an S11 measurement, where the resonant frequency (9.6 MHz) shows a significant peak (10.5dB).

Fig. 6
Fig. 6

Trapped aerosol sizes as a function of laser power at two different SAW IDT RF frequencies.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D=k.λ= ( 2πγ ρ f 2 ) 1/3

Metrics