Abstract

We present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities. The cavity geometry facilitates tuning of the modes through a change in cavity dimensions. Both the design and the fabrication technique presented could be extended to making trench waveguide-based plasmonic devices and circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
    [CrossRef]
  3. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  4. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
    [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  6. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
    [CrossRef]
  7. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  8. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
    [CrossRef]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  11. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
    [CrossRef] [PubMed]
  12. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
    [CrossRef] [PubMed]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  14. E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
    [CrossRef] [PubMed]
  15. C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20(5), 5696–5706 (2012).
    [CrossRef] [PubMed]
  16. E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011).
    [CrossRef]
  17. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
    [CrossRef] [PubMed]
  18. M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).
  19. A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
    [CrossRef]
  20. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  21. K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
    [CrossRef]
  22. S. Zhang, Y.-S. Park, Y.-M. Liu, T. Zentgraf, and X. Zhang, “Far-field measurement of ultra-small plasmonic mode volume,” Opt. Express18(6), 6048–6055 (2010).
    [CrossRef] [PubMed]
  23. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
    [CrossRef] [PubMed]
  24. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
    [CrossRef]

2013

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

2012

K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

C. L. C. Smith, B. Desiatov, I. Goykmann, I. Fernandez-Cuesta, U. Levy, and A. Kristensen, “Plasmonic V-groove waveguides with Bragg grating filters via nanoimprint lithography,” Opt. Express20(5), 5696–5706 (2012).
[CrossRef] [PubMed]

2011

E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011).
[CrossRef]

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

2010

2009

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

2007

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

2005

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

1998

M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).

1983

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Cabrini, S.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

Cui, S.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Desiatov, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Dhuey, S.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Ebbesen, T. W.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fernandez-Cuesta, I.

García de Abajo, F. J.

E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Goy, P.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

Goykmann, I.

Gross, M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Guo, Y.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Guo, Z.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Haroche, S.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

Harteneck, B.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hemmer, P. R.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hu, E. L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Kristensen, A.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Lenne, P.-F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Levy, U.

Li, H.

Liang, X.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Liu, T.-L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

Liu, Y.-M.

Loboda, M. J.

M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).

Lukin, M. D.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

Luo, B.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Luo, X.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Padmore, H. A.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Pan, W.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Park, Y.-S.

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Polman, A.

E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011).
[CrossRef]

E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Polyakov, A.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Raimond, J. M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

Rigneault, H.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Russell, K. J.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schuck, J. P.

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Smith, C. L. C.

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Toskey, G. A.

M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vesseur, E. J.

E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wen, K.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Wenger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Yan, L.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

Yeung, K. Y.-M.

K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Zentgraf, T.

S. Zhang, Y.-S. Park, Y.-M. Liu, T. Zentgraf, and X. Zhang, “Far-field measurement of ultra-small plasmonic mode volume,” Opt. Express18(6), 6048–6055 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, S.

Zhang, X.

S. Zhang, Y.-S. Park, Y.-M. Liu, T. Zentgraf, and X. Zhang, “Far-field measurement of ultra-small plasmonic mode volume,” Opt. Express18(6), 6048–6055 (2010).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. J. R. Vesseur and A. Polman, “Controlled spontaneous emission in plasmonic whispering gallery antennas,” Appl. Phys. Lett.99(23), 231112 (2011).
[CrossRef]

J. Vac. Sci. Technol. B

A. Polyakov, H. A. Padmore, X. Liang, S. Dhuey, B. Harteneck, J. P. Schuck, and S. Cabrini, “Light trapping in plasmonic nanocavities on metal surfaces,” J. Vac. Sci. Technol. B29(6), 06FF01 (2011).
[CrossRef]

Nano Lett.

E. J. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface--plasmon whispering gallery resonators,” Nano Lett.9(9), 3147–3150 (2009).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics6(7), 459–462 (2012).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

K. J. Russell, K. Y.-M. Yeung, and E. L. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett.50(24), 1903–1906 (1983).
[CrossRef]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett.97(5), 053002 (2006).
[CrossRef] [PubMed]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95(11), 117401 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Plasmonics

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, and X. Luo, “Characteristics of plasmonic filters with a notch located along rectangular resonators,” Plasmonics8(2), 167–171 (2013).
[CrossRef]

Science

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Solid State Technol.

M. J. Loboda and G. A. Toskey, “Understanding hydrogen silsesquioxane-based dielectric films processing,” Solid State Technol.41, 5 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic cartoon of the trench cavity: (a) a top-down view, (b) a cross-section view of the wider part of the trench (blue dashed line in (a)) and (c) a cross-section view of the narrower part of the trench (red dashed line in (a)). For the actual working device, w1, w2, h1, h2 were measured by SEM to be approximately 30, 15, 150, 110 nm, respectively.

Fig. 2
Fig. 2

Process flow for fabricating template-stripped trench cavities. Step (1): spin coat XR-1541 onto a clean, smooth silicon wafer. Step (2): pattern XR with e-beam lithography. Step (3): evaporate 5nm of Alq3 upon the template. Step (4): sputter -coat 500nm of silver onto the template, and attach the exposed surface of the silver layer to a wafer piece using epoxy. Step (5a): peel off the original silicon substrate and flip the chip over. Step (5b) cross-section view of the final trench. (Region enclosed by the dashed line in step (5a)).

Fig. 3
Fig. 3

SEM images of: (a) top-down view of the RIM, (b) 40° angled view of the RIM and (c) top-down view of the fabricated trench

Fig. 4
Fig. 4

FDTD simulation on trench cavities including: (a) the simulated spectrum of a cavity with reflector periodicity of a = 425nm, (b) effective index of the fundamental waveguide mode (nx = nz = 1) in the trenches with various dimensions, (c) in-plane electric field distribution recorded by a monitor 70nm below the top metal surface, (d) cross-sectional electric field distribution for modes with nz = 1 and nz = 2 and (e) Q and mode spectra dependence on number of reflector layers for the (1,5,1) mode.

Fig. 5
Fig. 5

(a) Photoluminescence (PL) spectra measured on and off cavities. (b) Polarization dependence of PL spectrum of a trench cavity. (c) Normalized PL spectra of trench cavities with various grating pitches and (d) dependence of resonant wavelengths on lattice constant. The dashed line indicates simulated peak wavelength of the (1,5,1) mode and the dotted line indicates the (1,7,1) mode. All spectra were taken under an excitation power of 7μw (~900w/cm2) and integrated for 20 seconds.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = n y 2 λ n e f f ,

Metrics